Suppr超能文献

一维非线性薛定谔方程的一种时间二阶紧致差分方法。

A Time Two-Mesh Compact Difference Method for the One-Dimensional Nonlinear Schrödinger Equation.

作者信息

He Siriguleng, Liu Yang, Li Hong

机构信息

School of Mathematics and Big Data, Hohhot Minzu College, Hohhot 010051, China.

School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China.

出版信息

Entropy (Basel). 2022 Jun 9;24(6):806. doi: 10.3390/e24060806.

Abstract

The nonlinear Schrödinger equation is an important model equation in the study of quantum states of physical systems. To improve the computing efficiency, a fast algorithm based on the time two-mesh high-order compact difference scheme for solving the nonlinear Schrödinger equation is studied. The fourth-order compact difference scheme is used to approximate the spatial derivatives and the time two-mesh method is designed for efficiently solving the resulting nonlinear system. Comparing to the existing time two-mesh algorithm, the novelty of the new algorithm is that the fine mesh solution, which becomes available, is also used as the initial guess of the linear system, which can improve the calculation accuracy of fine mesh solutions. Compared to the two-grid finite element methods (or finite difference methods) for nonlinear Schrödinger equations, the numerical calculation of this method is relatively simple, and its two-mesh algorithm is implemented in the temporal direction. Taking advantage of the discrete energy, the result with O(τC4+τF2+h4) in the discrete L2-norm is obtained. Here, τC and τF are the temporal parameters on the coarse and fine mesh, respectively, and is the space step size. Finally, some numerical experiments are conducted to demonstrate its efficiency and accuracy. The numerical results show that the new algorithm gives highly accurate results and preserves conservation laws of charge and energy. Furthermore, by comparing with the standard nonlinear implicit compact difference scheme, it can reduce the CPU time without loss of accuracy.

摘要

非线性薛定谔方程是物理系统量子态研究中的一个重要模型方程。为提高计算效率,研究了一种基于时间双网格高阶紧致差分格式求解非线性薛定谔方程的快速算法。采用四阶紧致差分格式近似空间导数,并设计时间双网格方法有效求解所得非线性系统。与现有的时间双网格算法相比,新算法的新颖之处在于将可用的细网格解也用作线性系统的初始猜测,这可以提高细网格解的计算精度。与非线性薛定谔方程的双网格有限元方法(或有限差分方法)相比,该方法的数值计算相对简单,其双网格算法在时间方向上实现。利用离散能量,在离散(L^2)范数下得到了(O(τC^4 + τF^2 + h^4))的结果。这里,(τC)和(τF)分别是粗网格和细网格上的时间参数,(h)是空间步长。最后,进行了一些数值实验以证明其效率和准确性。数值结果表明,新算法给出了高精度的结果,并保持了电荷和能量的守恒定律。此外,与标准非线性隐式紧致差分格式相比,它可以在不损失精度的情况下减少CPU时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea08/9222483/aab9e5089828/entropy-24-00806-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验