Baral Shristi, Hosseini Hassan, More Kaushik, Fabrin Thomaz M C, Braun Jochen, Prigge Matthias
Research Group Neuromodulatory Networks, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany.
Cognitive Biology, Faculty of Natural Sciences, Otto-von Guericke University, 39118 Magdeburg, Germany.
Brain Sci. 2022 Jun 1;12(6):728. doi: 10.3390/brainsci12060728.
The Locus coeruleus (LC) modulates various neuronal circuits throughout the brain. Its unique architectural organization encompasses a net of axonal innervation that spans the entire brain, while its somatic core is highly compact. Recent research revealed an unexpected cellular input specificity within the nucleus that can give rise to various network states that either broadcast norepinephrine signals throughout the brain or pointedly modulate specific brain areas. Such adaptive input-output functions likely surpass our existing network models that build upon a given synaptic wiring configuration between neurons. As the distances between noradrenergic neurons in the core of the LC are unusually small, neighboring neurons could theoretically impact each other via volume transmission of NE. We therefore set out to investigate if such interaction could be mediated through noradrenergic alpha2-receptors in a spiking neuron model of the LC. We validated our model of LC neurons through comparison with experimental patch-clamp data and identified key variables that impact alpha2-mediated inhibition of neighboring LC neurons. Our simulation confirmed a reliable autoinhibition of LC neurons after episodes of high neuronal activity that continue even after neuronal activity subsided. Additionally, dendro-somatic synapses inhibited spontaneous spiking in the somatic compartment of connected neurons in our model. We determined the exact position of hundreds of LC neurons in the mouse brain stem via a tissue clearing approach and, based on this, further determined that 25 percent of noradrenergic neurons have a neighboring LC neuron within less than a 25-micrometer radius. By modeling NE diffusion, we estimated that more than 15 percent of the alpha2-adrenergic receptors fraction can bind NE within such a diffusion radius. Our spiking neuron model of LC neurons predicts that repeated or long-lasting episodes of high neuronal activity induce partitioning of the gross LC network and reduce the spike rate in neighboring neurons at distances smaller than 25 μm. As these volume-mediating neighboring effects are challenging to test with the current methodology, our findings can guide future experimental approaches to test this phenomenon and its physiological consequences.
蓝斑(LC)调节着大脑中的各种神经回路。其独特的结构组织包括一个遍布整个大脑的轴突神经支配网络,而其细胞体核心则高度紧凑。最近的研究揭示了该核内意外的细胞输入特异性,这可能导致各种网络状态,要么在整个大脑中传播去甲肾上腺素信号,要么针对性地调节特定脑区。这种适应性输入 - 输出功能可能超越了我们现有的基于神经元之间给定突触连接配置构建的网络模型。由于LC核心中去甲肾上腺素能神经元之间的距离异常小,理论上相邻神经元可以通过NE的容积传递相互影响。因此,我们着手研究这种相互作用是否可以通过LC的脉冲神经元模型中的去甲肾上腺素能α2受体介导。我们通过与实验性膜片钳数据比较验证了我们的LC神经元模型,并确定了影响α2介导的对相邻LC神经元抑制作用的关键变量。我们的模拟证实,在高神经元活动发作后,LC神经元存在可靠的自身抑制,即使在神经元活动消退后仍会持续。此外,树突 - 细胞体突触在我们的模型中抑制了相连神经元细胞体部分的自发放电。我们通过组织透明化方法确定了小鼠脑干中数百个LC神经元的确切位置,并在此基础上进一步确定,25%的去甲肾上腺素能神经元在半径小于25微米的范围内有一个相邻的LC神经元。通过对NE扩散进行建模,我们估计在这样的扩散半径内,超过15%的α2 - 肾上腺素能受体部分可以结合NE。我们的LC神经元脉冲神经元模型预测,重复或持久的高神经元活动发作会导致整个LC网络的分隔,并降低距离小于25μm的相邻神经元的放电率。由于这些容积介导的相邻效应目前的方法难以测试,我们的发现可以指导未来的实验方法来测试这一现象及其生理后果。