Suppr超能文献

利用智能设备传感器提高车辆识别精度。

Accuracy Improvement of Vehicle Recognition by Using Smart Device Sensors.

机构信息

Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA.

Department of Information Systems, Ying Wu College of Computing, New Jersey Institute of Technology, Newark, NJ 07102, USA.

出版信息

Sensors (Basel). 2022 Jun 10;22(12):4397. doi: 10.3390/s22124397.

Abstract

This paper explores the utilization of smart device sensors for the purpose of vehicle recognition. Currently a ubiquitous aspect of people's lives, smart devices can conveniently record details about walking, biking, jogging, and stepping, including physiological data, via often built-in phone activity recognition processes. This paper examines research on intelligent transportation systems to uncover how smart device sensor data may be used for vehicle recognition research, and fit within its growing body of literature. Here, we use the accelerometer and gyroscope, which can be commonly found in a smart phone, to detect the class of a vehicle. We collected data from cars, buses, trains, and bikes using a smartphone, and we designed a 1D CNN model leveraging the residual connection for vehicle recognition. The model achieved more than 98% accuracy in prediction. Moreover, we also provide future research directions based on our study.

摘要

本文探讨了智能设备传感器在车辆识别中的应用。智能设备目前已广泛融入人们的生活,通过内置的电话活动识别过程,可以方便地记录步行、骑行、慢跑和踏步等活动的详细信息,包括生理数据。本文通过研究智能交通系统,揭示了智能设备传感器数据如何可用于车辆识别研究,并纳入其不断增长的文献体系。在这里,我们使用智能手机中常见的加速度计和陀螺仪来检测车辆类型。我们使用智能手机从汽车、公共汽车、火车和自行车上收集数据,并设计了一个利用残差连接的 1D CNN 模型进行车辆识别。该模型的预测准确率超过 98%。此外,我们还根据研究结果提供了未来的研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e39/9228882/7c98ac9735c2/sensors-22-04397-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验