Suppr超能文献

通过选择性掺杂可控地调整嵌入型锂存储材料的最大晶胞体积变化:以γ相LiVO为例

Selective Doping to Controllably Tailor Maximum Unit-Cell-Volume Change of Intercalating Li -Storage Materials: A Case Study of γ Phase Li VO.

作者信息

Deng Jianbin, Lv Changpeng, Jiang Tian, Ma Siyuan, Liu Xuehua, Lin Chunfu

机构信息

Institute of Materials for Energy and Environment, School of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China.

出版信息

Adv Sci (Weinh). 2022 Aug;9(24):e2106003. doi: 10.1002/advs.202106003. Epub 2022 Jun 24.

Abstract

Capacity decay of an intercalating Li -storage material is mainly due to the its particle microcracks from stress-causing volume change. To extend its cycle life, its unit-cell-volume change has to be minimized as much as possible. Here, based on a γ-Li VO model material, the authors explore selective doping as a general strategy to controllably tailor its maximum unit-cell-volume change, then clarify the relationship between its crystal-structure openness and maximum unit-cell-volume change, and finally demonstrate the superiority of "zero-strain" materials within 25-60 °C (especially at 60 °C). With increasing the large-sized Ge dopant, the unit-cell volume of γ-Li Ge V O becomes larger and its crystal structure becomes looser, resulting in the decrease of its maximum unit-cell-volume change. In contrast, the doping with small-sized Si shows a reverse trend. The tailoring reveals that γ-Li Ge V O owns the smallest maximum unit-cell-volume change of 0.016% in the research field of intercalating Li -storage materials. Consequently, γ-Li Ge V O nanowires exhibit excellent cycling stability at 25/60 °C with 94.8%/111.5% capacity-retention percentages after 1800/1500 cycles at 2 A g . This material further shows large reversible capacities, proper working potentials, and high rate capability at both temperatures, fully demonstrating its great application potential in long-life lithium-ion batteries.

摘要

嵌入型锂存储材料的容量衰减主要归因于因体积变化产生应力导致的颗粒微裂纹。为延长其循环寿命,必须尽可能将其单位晶胞体积变化降至最低。在此,基于γ-LiVO模型材料,作者探索了选择性掺杂这一通用策略,以可控方式调整其最大单位晶胞体积变化,进而阐明其晶体结构开放性与最大单位晶胞体积变化之间的关系,最终证明“零应变”材料在25至60°C(尤其是在60°C)范围内的优越性。随着大尺寸Ge掺杂剂的增加,γ-LiGeVO的单位晶胞体积变大,其晶体结构变得更松散,导致其最大单位晶胞体积变化减小。相反,小尺寸Si掺杂则呈现相反趋势。这种调整表明,在嵌入型锂存储材料研究领域中,γ-LiGeVO的最大单位晶胞体积变化最小,为0.016%。因此,γ-LiGeVO纳米线在25/60°C下表现出优异的循环稳定性,在2Ag-1电流密度下经过1800/1500次循环后容量保持率分别为94.8%/111.5%。这种材料在两个温度下还表现出较大的可逆容量、合适的工作电位和高倍率性能,充分证明了其在长寿命锂离子电池中的巨大应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d89b/9405516/544958246c95/ADVS-9-2106003-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验