Suzuki Takao K
Department of Biological Sciences, Graduate School of Science, the University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan.
Biophys Physicobiol. 2022 Apr 5;19:1-17. doi: 10.2142/biophysico.bppb-v19.0011. eCollection 2022.
Design principles of phenotypes in organisms are fundamental issues in physical biology. So far, understanding "systems" of living organisms have been chiefly promoted by understanding the underlying biomolecules such as genes and proteins, and their intra- and inter-relationships and regulations. After a long period of sophistication, biophysics and molecular biology have established a general framework for understanding 'molecular systems' in organisms without regard to species, so that the findings of fly studies can be applied to mouse studies. However, little attention has been paid to exploring "phenotypic systems" in organisms, and thus its general framework remains poorly understood. Here I review concepts, methods, and case studies using butterfly and moth wing patterns to explore phenotypes as systems. First, I present a unifying framework for phenotypic traits as systems, termed multi-component systems. Second, I describe how to define components of phenotypic systems, and also show how to quantify interactions among phenotypic parts. Subsequently, I introduce the concept of the macro-evolutionary process, which illustrates how to generate complex traits. In this point, I also introduce mathematical methods, "phylogenetic comparative methods", which provide stochastic processes along molecular phylogeny as bifurcated paths to quantify trait evolution. Finally, I would like to propose two key concepts, macro-evolutionary pathways and genotype-phenotype loop (GP loop), which must be needed for the next directions. I hope these efforts on phenotypic biology will become one major target in biophysics and create the next generations of textbooks. This review article is an extended version of the Japanese article, Biological Physics in Phenotypic Systems of Living Organisms, published in SEIBUTSU-BUTSURI Vol. 61, p. 31-35 (2021).
生物体中表型的设计原则是物理生物学的基本问题。到目前为止,对生物体“系统”的理解主要是通过了解诸如基因和蛋白质等潜在生物分子及其内部和相互关系与调控来推动的。经过长时间的精细化发展,生物物理学和分子生物学已经建立了一个不考虑物种来理解生物体中“分子系统”的通用框架,以至于果蝇研究的结果可以应用于小鼠研究。然而,在探索生物体中的“表型系统”方面却很少受到关注,因此其通用框架仍然知之甚少。在这里,我回顾了使用蝴蝶和蛾类翅膀图案将表型作为系统进行探索的概念、方法和案例研究。首先,我提出了一个将表型性状作为系统的统一框架,称为多组分系统。其次,我描述了如何定义表型系统的组分,还展示了如何量化表型部分之间的相互作用。随后,我引入了宏观进化过程的概念,它说明了如何产生复杂性状。在这一点上,我还介绍了数学方法“系统发育比较方法”,它沿着分子系统发育提供随机过程作为分叉路径来量化性状进化。最后,我想提出两个关键概念,宏观进化路径和基因型 - 表型环(GP环),这是未来研究方向所必需的。我希望这些在表型生物学上的努力将成为生物物理学的一个主要目标,并创造下一代教科书。这篇综述文章是发表在《生物物理》第61卷,第31 - 35页(2021年)的日文文章《生物体表型系统中的生物物理学》的扩展版本。