Suppr超能文献

一种将脉冲神经分类器转化为可解释分类器的新型方法的开发。

Development of a Novel Transformation of Spiking Neural Classifier to an Interpretable Classifier.

作者信息

Jeyasothy Abeegithan, Suresh Sundaram, Ramasamy Savitha, Sundararajan Narasimhan

出版信息

IEEE Trans Cybern. 2024 Jan;54(1):3-12. doi: 10.1109/TCYB.2022.3181181. Epub 2023 Dec 20.

Abstract

This article presents a new approach for providing an interpretation for a spiking neural network classifier by transforming it to a multiclass additive model. The spiking classifier is a multiclass synaptic efficacy function-based leaky-integrate-fire neuron (Mc-SEFRON) classifier. As a first step, the SEFRON classifier for binary classification is extended to handle multiclass classification problems. Next, a new method is presented to transform the temporally distributed weights in a fully trained Mc-SEFRON classifier to shape functions in the feature space. A composite of these shape functions results in an interpretable classifier, namely, a directly interpretable multiclass additive model (DIMA). The interpretations of DIMA are also demonstrated using the multiclass Iris dataset. Further, the performances of both the Mc-SEFRON and DIMA classifiers are evaluated on ten benchmark datasets from the UCI machine learning repository and compared with the other state-of-the-art spiking neural classifiers. The performance study results show that Mc-SEFRON produces similar or better performances than other spiking neural classifiers with an added benefit of interpretability through DIMA. Furthermore, the minor differences in accuracies between Mc-SEFRON and DIMA indicate the reliability of the DIMA classifier. Finally, the Mc-SEFRON and DIMA are tested on three real-world credit scoring problems, and their performances are compared with state-of-the-art results using machine learning methods. The results clearly indicate that DIMA improves the classification accuracy by up to 12% over other interpretable classifiers indicating a better quality of interpretations on the highly imbalanced credit scoring datasets.

摘要

本文提出了一种新方法,通过将脉冲神经网络分类器转换为多类加法模型来对其进行解释。该脉冲分类器是基于多类突触效能函数的泄漏积分发放神经元(Mc-SEFRON)分类器。第一步,将用于二分类的SEFRON分类器扩展以处理多类分类问题。接下来,提出一种新方法,将经过充分训练的Mc-SEFRON分类器中随时间分布的权重转换为特征空间中的形状函数。这些形状函数的组合产生了一个可解释的分类器,即直接可解释的多类加法模型(DIMA)。还使用多类鸢尾花数据集展示了DIMA的解释。此外,在来自UCI机器学习库的十个基准数据集上评估了Mc-SEFRON和DIMA分类器的性能,并与其他先进的脉冲神经分类器进行了比较。性能研究结果表明,Mc-SEFRON产生的性能与其他脉冲神经分类器相似或更好,并且通过DIMA具有可解释性的额外优势。此外,Mc-SEFRON和DIMA在准确率上的微小差异表明了DIMA分类器的可靠性。最后,在三个实际信用评分问题上对Mc-SEFRON和DIMA进行了测试,并将它们的性能与使用机器学习方法的先进结果进行了比较。结果清楚地表明,DIMA在高度不平衡的信用评分数据集上,比其他可解释分类器的分类准确率提高了多达12%,这表明其解释质量更高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验