Suppr超能文献

基于动态 Python 的方法提供了呼吸道上皮感染过程中细胞间连接组织的定量分析。

Dynamic Python-Based Method Provides Quantitative Analysis of Intercellular Junction Organization During Infection of the Respiratory Epithelium.

机构信息

Department of Biological Sciences, San Jose State University, San Jose, CA, United States.

Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, United States.

出版信息

Front Cell Infect Microbiol. 2022 Jun 10;12:865528. doi: 10.3389/fcimb.2022.865528. eCollection 2022.

Abstract

Many respiratory pathogens compromise epithelial barrier function during lung infection by disrupting intercellular junctions, such as adherens junctions and tight junctions, that maintain intercellular integrity. This includes , a leading cause of pneumonia, which can successfully breach the epithelial barrier and cause severe infections such as septicemia and meningitis. Fluorescence microscopy analysis on intercellular junction protein manipulation by respiratory pathogens has yielded major advances in our understanding of their pathogenesis. Unfortunately, a lack of automated image analysis tools that can tolerate variability in sample-sample staining has limited the accuracy in evaluating intercellular junction organization quantitatively. We have created an open source, automated Python computer script called "Intercellular Junction Organization Quantification" or IJOQ that can handle a high degree of sample-sample staining variability and robustly measure intercellular junction integrity. validation of IJOQ was successful in analyzing computer generated images containing varying degrees of simulated intercellular junction disruption. Accurate IJOQ analysis was further confirmed using images generated from and bacterial infection models. When compared in parallel to a previously published, semi-automated script used to measure intercellular junction organization, IJOQ demonstrated superior analysis for all and experiments described herein. These data indicate that IJOQ is an unbiased, easy-to-use tool for fluorescence microscopy analysis and will serve as a valuable, automated resource to rapidly quantify intercellular junction disruption under diverse experimental conditions.

摘要

许多呼吸道病原体通过破坏维持细胞间完整性的细胞间连接,如黏附连接和紧密连接,在肺部感染期间损害上皮屏障功能。这包括肺炎支原体,它可以成功突破上皮屏障并导致严重感染,如败血症和脑膜炎。呼吸道病原体对细胞间连接蛋白的操纵的荧光显微镜分析在我们对其发病机制的理解上取得了重大进展。不幸的是,缺乏能够容忍样本染色变异性的自动化图像分析工具,限制了定量评估细胞间连接组织的准确性。我们创建了一个开源的、自动化的 Python 计算机脚本,称为“细胞间连接组织定量”或 IJOQ,它可以处理高度的样本染色变异性,并稳健地测量细胞间连接的完整性。IJOQ 的验证成功地分析了包含不同程度模拟细胞间连接破坏的计算机生成图像。使用来自肺炎支原体和 细菌感染模型生成的图像进一步证实了准确的 IJOQ 分析。与用于测量细胞间连接组织的先前发表的半自动化脚本进行并行比较时,IJOQ 证明了在本文描述的所有肺炎支原体和 实验中具有优越的分析能力。这些数据表明,IJOQ 是荧光显微镜分析的一种无偏、易于使用的工具,并将成为一种有价值的自动化资源,可在各种实验条件下快速量化细胞间连接的破坏。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b78/9230243/75fa2bb93e05/fcimb-12-865528-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验