Suppr超能文献

使用基于深度学习的方法从基质辅助激光解吸电离飞行时间质谱(MALDI-TOF MS)光谱中有效预测万古霉素耐药性

Efficiently Predicting Vancomycin Resistance of From MALDI-TOF MS Spectra Using a Deep Learning-Based Approach.

作者信息

Wang Hsin-Yao, Hsieh Tsung-Ting, Chung Chia-Ru, Chang Hung-Ching, Horng Jorng-Tzong, Lu Jang-Jih, Huang Jia-Hsin

机构信息

Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.

Ph.D. Program in Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan.

出版信息

Front Microbiol. 2022 Jun 6;13:821233. doi: 10.3389/fmicb.2022.821233. eCollection 2022.

Abstract

Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has recently become a useful analytical approach for microbial identification. The presence and absence of specific peaks on MS spectra are commonly used to identify the bacterial species and predict antibiotic-resistant strains. However, the conventional approach using few single peaks would result in insufficient prediction power without using complete information of whole MS spectra. In the past few years, machine learning algorithms have been successfully applied to analyze the MALDI-TOF MS peaks pattern for rapid strain typing. In this study, we developed a convolutional neural network (CNN) method to deal with the complete information of MALDI-TOF MS spectra for detecting , which is one of the leading pathogens in the world. We developed a CNN model to rapidly and accurately predict vancomycin-resistant (VRE) samples from the whole mass spectra profiles of clinical samples. The CNN models demonstrated good classification performances with the average area under the receiver operating characteristic curve (AUROC) of 0.887 when using external validation data independently. Additionally, we employed the score-class activation mapping (CAM) method to identify the important features of our CNN models and found some discriminative signals that can substantially contribute to detecting the ion of resistance. This study not only utilized the complete information of MALTI-TOF MS data directly but also provided a practical means for rapid detection of VRE using a deep learning algorithm.

摘要

基质辅助激光解吸电离飞行时间(MALDI-TOF)质谱(MS)最近已成为一种用于微生物鉴定的有用分析方法。质谱图上特定峰的有无通常用于鉴定细菌种类并预测抗生素耐药菌株。然而,使用少数单峰的传统方法在不使用整个质谱图的完整信息时会导致预测能力不足。在过去几年中,机器学习算法已成功应用于分析MALDI-TOF MS峰模式以进行快速菌株分型。在本研究中,我们开发了一种卷积神经网络(CNN)方法来处理MALDI-TOF MS谱图的完整信息,以检测 ,它是世界上主要的病原体之一。我们开发了一个CNN模型,用于从临床样本的整个质谱图轮廓中快速准确地预测耐万古霉素 (VRE) 样本。当独立使用外部验证数据时,CNN模型表现出良好的分类性能,接收器工作特征曲线(AUROC)下的平均面积为0.887。此外,我们采用分数级激活映射(CAM)方法来识别我们的CNN模型的重要特征,并发现了一些对检测耐药离子有重要贡献的判别信号。本研究不仅直接利用了MALTI-TOF MS数据的完整信息,还提供了一种使用深度学习算法快速检测VRE的实用方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7db1/9231590/7480395c19fb/fmicb-13-821233-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验