Department for Microphysiological Systems, Institute of Biomedical Engineering, Eberhard Karls University Tübingen, Tübingen 72074, Germany.
NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen 72770, Germany.
ACS Biomater Sci Eng. 2022 Nov 14;8(11):4643-4647. doi: 10.1021/acsbiomaterials.1c01536. Epub 2022 Jun 27.
Over the past decade, organ-on-chip research has been one of the most prolific areas of the entire field of tissue engineering. The development of organ-on-chip models requires an integrated interdisciplinary approach merging technologies and concepts from several different disciplines, including microfabrication, microfluidics, biomaterials, stem cell science, pharma-/toxicology, and medicine. In this perspective, we follow the journey of an organ-on-chip through its many different stages, from (i) the initial idea/specific scientific question to (ii) the design/concept phase, (iii) the engineering (fabrication and materials, sensor/actuator integration) and (iv) biology considerations (cell sources, biomaterials/scaffold), (v) the cell injection and tissue assembly process, (vi) the assay development, and (vii) the functional validation, all the way to (viii) the final applications. By summarizing some of the key learnings and findings from a developer's perspective and identifying suitable introductory reviews, this perspective strives to provide a conceptual, stepwise guide for the holistic development of an organ-on-chip model.
在过去的十年中,器官芯片研究一直是整个组织工程领域中最多产的领域之一。器官芯片模型的开发需要综合的跨学科方法,融合来自多个不同学科的技术和概念,包括微制造、微流控、生物材料、干细胞科学、药物毒理学和医学。在这篇观点文章中,我们跟随器官芯片的旅程,了解其经历的许多不同阶段,从(i)最初的想法/特定的科学问题到(ii)设计/概念阶段,(iii)工程(制造和材料、传感器/执行器集成)和(iv)生物学考虑因素(细胞来源、生物材料/支架),(v)细胞注射和组织组装过程,(vi)检测方法开发,和(vii)功能验证,一直到(viii)最终应用。通过从开发者的角度总结一些关键的经验教训和发现,并确定合适的入门综述,本观点文章努力为器官芯片模型的整体开发提供一个概念性的、逐步的指南。