Suppr超能文献

基于进化的数学模型显著延长了转移性去势抵抗性前列腺癌对阿比特龙的反应,并确定了进一步改善疗效的策略。

Evolution-based mathematical models significantly prolong response to abiraterone in metastatic castrate-resistant prostate cancer and identify strategies to further improve outcomes.

机构信息

Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, United States.

Department of Integrated Mathematical Oncology, Moffitt Cancer Center and Research Institute, Tampa, United States.

出版信息

Elife. 2022 Jun 28;11:e76284. doi: 10.7554/eLife.76284.

Abstract

BACKGROUND

Abiraterone acetate is an effective treatment for metastatic castrate-resistant prostate cancer (mCRPC), but evolution of resistance inevitably leads to progression. We present a pilot study in which abiraterone dosing is guided by evolution-informed mathematical models to delay onset of resistance.

METHODS

In the study cohort, abiraterone was stopped when PSA was <50% of pretreatment value and resumed when PSA returned to baseline. Results are compared to a contemporaneous cohort who had >50% PSA decline after initial abiraterone administration and met trial eligibility requirements but chose standard of care (SOC) dosing.

RESULTS

17 subjects were enrolled in the adaptive therapy group and 16 in the SOC group. All SOC subjects have progressed, but four patients in the study cohort remain stably cycling (range 53-70 months). The study cohort had significantly improved median time to progression (TTP; 33.5 months; p<0.001) and median overall survival (OS; 58.5 months; hazard ratio, 0.41, 95% confidence interval (CI), 0.20-0.83, p<0.001) compared to 14.3 and 31.3 months in the SOC cohort. On average, study subjects received no abiraterone during 46% of time on trial. Longitudinal trial data demonstrated the competition coefficient ratio () of sensitive and resistant populations, a critical factor in intratumoral evolution, was two- to threefold higher than pre-trial estimates. Computer simulations of intratumoral evolutionary dynamics in the four long-term survivors found that, due to the larger value for cycled therapy significantly decreased the resistant population. Simulations in subjects who progressed predicted further increases in OS could be achieved with prompt abiraterone withdrawal after achieving 50% PSA reduction.

CONCLUSIONS

Incorporation of evolution-based mathematical models into abiraterone monotherapy for mCRPC significantly increases TTP and OS. Computer simulations with updated parameters from longitudinal trial data can estimate intratumoral evolutionary dynamics in each subject and identify strategies to improve outcomes.

FUNDING

Moffitt internal grants and NIH/NCI U54CA143970-05 (Physical Science Oncology Network).

摘要

背景

醋酸阿比特龙是转移性去势抵抗性前列腺癌(mCRPC)的有效治疗方法,但耐药性的发展不可避免地导致疾病进展。我们提出了一项试点研究,该研究通过基于进化的数学模型来指导醋酸阿比特龙的剂量,以延迟耐药的发生。

方法

在研究队列中,当 PSA 降至治疗前值的<50%时停止使用醋酸阿比特龙,当 PSA 恢复到基线时再重新使用。研究结果与同期队列进行了比较,同期队列在初始使用醋酸阿比特龙后 PSA 下降>50%,且符合试验入组标准,但选择了标准治疗(SOC)剂量。

结果

共有 17 名受试者入组接受适应性治疗组,16 名受试者入组 SOC 组。所有 SOC 组的受试者均已进展,但研究队列中有 4 名患者仍处于稳定循环状态(53-70 个月)。研究队列的中位无进展生存期(TTP)显著延长(33.5 个月;p<0.001),中位总生存期(OS)显著延长(58.5 个月;风险比,0.41,95%置信区间(CI),0.20-0.83,p<0.001),而 SOC 组的 TTP 和 OS 分别为 14.3 和 31.3 个月。平均而言,研究对象在试验期间有 46%的时间未接受醋酸阿比特龙治疗。纵向试验数据表明,敏感和耐药人群的竞争系数比值()是肿瘤内进化的一个关键因素,比试验前的估计值高 2-3 倍。对 4 名长期存活者的肿瘤内进化动力学的计算机模拟发现,由于值较大,循环治疗显著降低了耐药人群。对进展受试者的模拟预测,如果在 PSA 降低 50%后及时停止使用醋酸阿比特龙,可进一步延长 OS。

结论

将基于进化的数学模型纳入 mCRPC 的醋酸阿比特龙单药治疗中,可显著延长 TTP 和 OS。使用来自纵向试验数据的更新参数进行计算机模拟可以估计每个受试者的肿瘤内进化动力学,并确定改善结果的策略。

资金来源

莫菲特内部拨款和 NIH/NCI U54CA143970-05(物理科学肿瘤网络)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a21/9239688/87a2922023b1/elife-76284-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验