Suppr超能文献

基于相关分析的人工神经网络性能在行为信号检测实验中与人类性能具有定性可比性。

Artificial neural network performance based on correlation analysis qualitatively comparable with human performance in behavioral signal detection experiments.

机构信息

Micro- and Nanoelectronic Systems, Institute of Micro- and Nanotechnologies-IMN MacroNano®, Technische Universität Ilmenau, Ilmenau, Germany.

Nanoelectronics, Faculty of Engineering, University of Kiel, Kiel, Germany.

出版信息

J Neurophysiol. 2022 Aug 1;128(2):279-289. doi: 10.1152/jn.00393.2021. Epub 2022 Jun 29.

Abstract

Standard Gaussian signal detection theory (SDT) is a widely used approach to assess the detection performance of living organisms or technical systems without looking at the inner workings of these systems like neural or electronic mechanisms. Nevertheless, a consideration of the inner mechanisms of a system and how they produce observed behaviors should help to better understand the functioning. It might even offer the possibility to demonstrate isolated pattern separation processes directly in the model. To do so, modeling the interaction between the entorhinal cortex (EC) and the hippocampal subnetwork dentate gyrus (DG) via the perforant path reveals the decorrelation network's mode of operation. We show that the ability to do pattern separation is crucial for high-performance pattern recognition, but also for lure discrimination, and depends on the proportionality between input and output network. We elucidate the interplay of the entorhinal cortex and the hippocampal dentate gyrus during pattern separation tasks by providing a new simulation model. Functional memory formation and processing of similar memory content is illuminated from within the system. For the first time orthogonalized spiking patterns are evaluated with signal detection theory methods, and the results are applied to clinically established and novel tests.

摘要

标准的高斯信号检测理论(SDT)是一种广泛用于评估生物体或技术系统的检测性能的方法,而无需研究这些系统的内部工作原理,如神经或电子机制。然而,考虑系统的内部机制以及它们如何产生观察到的行为应该有助于更好地理解其功能。它甚至有可能直接在模型中证明分离的模式分离过程。为此,通过传入通路对海马旁回(EC)和海马子网齿状回(DG)之间的相互作用进行建模,揭示了去相关网络的工作模式。我们表明,进行模式分离的能力对于高性能的模式识别至关重要,但对于诱饵辨别也是如此,并且取决于输入和输出网络之间的比例关系。我们通过提供新的模拟模型,阐明了在模式分离任务期间内嗅皮层和海马齿状回之间的相互作用。功能记忆形成和类似记忆内容的处理从系统内部得到了阐明。首次使用信号检测理论方法评估了正交化的尖峰模式,并且将结果应用于临床建立的和新的测试中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验