Suppr超能文献

基于开狄拉克奇点的可扩展单模面发射激光器。

Scalable single-mode surface-emitting laser via open-Dirac singularities.

机构信息

Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA, USA.

Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

出版信息

Nature. 2022 Aug;608(7924):692-698. doi: 10.1038/s41586-022-05021-4. Epub 2022 Jun 29.

Abstract

Single-aperture cavities are a key component of lasers that are instrumental for the amplification and emission of a single light mode. However, the appearance of high-order transverse modes as the size of the cavities increases has frustrated efforts to scale-up cavities while preserving single-mode operation since the invention of the laser six decades ago. A suitable physical mechanism that allows single-mode lasing irrespective of the cavity size-a 'scale invariant' cavity or laser-has not been identified yet. Here we propose and demonstrate experimentally that open-Dirac electromagnetic cavities with linear dispersion-which in our devices are realized by a truncated photonic crystal arranged in a hexagonal pattern-exhibit unconventional scaling of losses in reciprocal space, leading to single-mode lasing that is maintained as the cavity is scaled up in size. The physical origin of this phenomenon lies in the convergence of the complex part of the free spectral range in open-Dirac cavities towards a constant governed by the loss rates of distinct Bloch bands, whereas for common cavities it converges to zero as the size grows, leading to inevitable multimode emission. An unconventional flat-envelope fundamental mode locks all unit cells in the cavity in phase, leading to single-mode lasing. We name such sources Berkeley surface-emitting lasers (BerkSELs) and demonstrate that their far-field corresponds to a topological singularity of charge two, in agreement with our theory. Open-Dirac cavities unlock avenues for light-matter interaction and cavity quantum electrodynamics.

摘要

单孔径腔是激光的关键组成部分,对于放大和发射单一光模式至关重要。然而,自 60 年前激光发明以来,随着腔尺寸的增加,高阶横模的出现一直困扰着人们对腔进行扩展而保持单模操作。到目前为止,还没有找到一种合适的物理机制,使得无论腔的大小如何,都能实现单模激光——一种“标度不变”的腔或激光。在这里,我们提出并实验证明了具有线性色散的开狄拉克电磁腔——在我们的器件中,通过排列成六边形图案的截断光子晶体来实现——在倒空间中表现出损耗的非常规标度,从而实现了单模激光,并且随着腔尺寸的增大,这种激光得以维持。这种现象的物理起源在于,开狄拉克腔中自由光谱范围的复数部分在损耗率不同的布洛赫带的控制下收敛到一个常数,而对于普通腔,随着尺寸的增大,它收敛到零,导致不可避免的多模发射。非常规的平坦包络基模将腔中的所有单元锁定在相位上,从而实现单模激光。我们将这种光源命名为伯克利面发射激光器(BerkSEL),并通过实验证明,它们的远场与电荷为 2 的拓扑奇点相符合,这与我们的理论相符。开狄拉克腔为光与物质相互作用和腔量子电动力学开辟了途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验