Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.
Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA.
Sci Rep. 2022 Jun 29;12(1):10982. doi: 10.1038/s41598-022-14967-4.
Plant growth under spectrally-enriched low light conditions leads to adjustment in the relative abundance of the two photosystems in an acclimatory response known as photosystem stoichiometry adjustment. Adjustment of photosystem stoichiometry improves the quantum efficiency of photosynthesis but how this process perceives light quality changes and how photosystem amount is regulated remain largely unknown. By using a label-free quantitative mass spectrometry approach in Arabidopsis here we show that photosystem stoichiometry adjustment is primarily driven by the regulation of photosystem I content and that this forms the major thylakoid proteomic response under light quality. Using light and redox signaling mutants, we further show that the light quality-responsive accumulation of photosystem I gene transcripts and proteins requires phytochrome B photoreceptor but not plastoquinone redox signaling as previously suggested. In far-red light, the increased acceptor side limitation might deplete active photosystem I pool, further contributing to the adjustment of photosystem stoichiometry.
在光谱丰富的低光条件下,植物的生长会导致两个光系统的相对丰度发生调整,这种适应性反应被称为光系统化学计量比的调整。光系统化学计量比的调整可以提高光合作用的量子效率,但这个过程如何感知光质变化以及如何调节光系统数量在很大程度上仍然未知。在这里,我们使用无标记定量质谱法在拟南芥中表明,光系统化学计量比的调整主要是由光系统 I 含量的调节驱动的,这是在光质下形成主要类囊体蛋白质组响应的原因。通过使用光和氧化还原信号突变体,我们进一步表明,光质响应性的光系统 I 基因转录本和蛋白质的积累需要光敏色素 B 光受体,但不需要质体醌氧化还原信号,如先前所建议的那样。在远红光中,增加的受体侧限制可能会耗尽活性光系统 I 池,这进一步有助于光系统化学计量比的调整。