Suppr超能文献

SPAM:近似哈密顿矩阵表示的频谱

SPAM: the spectrum of approximated Hamiltonian matrices representations.

作者信息

Fabrizio Alberto, Briling Ksenia R, Corminboeuf Clemence

机构信息

Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland

National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland.

出版信息

Digit Discov. 2022 Apr 4;1(3):286-294. doi: 10.1039/d1dd00050k. eCollection 2022 Jun 13.

Abstract

Physics-inspired molecular representations are the cornerstone of similarity-based learning applied to solve chemical problems. Despite their conceptual and mathematical diversity, this class of descriptors shares a common underlying philosophy: they all rely on the molecular information that determines the form of the electronic Schrödinger equation. Existing representations take the most varied forms, from non-linear functions of atom types and positions to atom densities and potential, up to complex quantum chemical objects directly injected into the ML architecture. In this work, we present the spectrum of approximated Hamiltonian matrices (SPAM) as an alternative pathway to construct quantum machine learning representations through leveraging the foundation of the electronic Schrödinger equation itself: the electronic Hamiltonian. As the Hamiltonian encodes all quantum chemical information at once, SPAM representations not only distinguish different molecules and conformations, but also different spin, charge, and electronic states. As a proof of concept, we focus here on efficient SPAM representations built from the eigenvalues of a hierarchy of well-established and readily-evaluated "guess" Hamiltonians. These SPAM representations are particularly compact and efficient for kernel evaluation and their complexity is independent of the number of different atom types in the database.

摘要

受物理启发的分子表示是应用于解决化学问题的基于相似性学习的基石。尽管它们在概念和数学上存在多样性,但这类描述符有着共同的基本理念:它们都依赖于决定电子薛定谔方程形式的分子信息。现有的表示形式多种多样,从原子类型和位置的非线性函数到原子密度和势,直至直接注入机器学习架构的复杂量子化学对象。在这项工作中,我们提出了近似哈密顿矩阵谱(SPAM),作为一种通过利用电子薛定谔方程本身的基础——电子哈密顿量来构建量子机器学习表示的替代途径。由于哈密顿量一次性编码了所有量子化学信息,SPAM表示不仅能区分不同的分子和构象,还能区分不同的自旋、电荷和电子态。作为概念验证,我们在此重点关注由一系列成熟且易于评估的“猜测”哈密顿量的特征值构建的高效SPAM表示。这些SPAM表示对于核评估特别紧凑且高效,并且它们的复杂度与数据库中不同原子类型的数量无关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d43/9189859/d16edac83843/d1dd00050k-f2.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验