Suppr超能文献

使用动态光学相干弹性成像技术进行微米级滞后测量。

Micron-scale hysteresis measurement using dynamic optical coherence elastography.

作者信息

Li Wenjie, Feng Jinping, Wang Yicheng, Shi Qun, Ma Guoqin, Aglyamov Salavat, Larin Kirill V, Lan Gongpu, Twa Michael

机构信息

Foshan University, School of Mechatronic Engineering and Automation, Foshan, Guangdong, 528000, China.

Contributed equally.

出版信息

Biomed Opt Express. 2022 Apr 25;13(5):3021-3041. doi: 10.1364/BOE.457617. eCollection 2022 May 1.

Abstract

We present a novel optical coherence elastography (OCE) method to characterize mechanical hysteresis of soft tissues based on transient (milliseconds), low-pressure (<20 Pa) non-contact microliter air-pulse stimulation and micrometer-scale sample displacements. The energy dissipation rate (sample hysteresis) was quantified for soft-tissue phantoms (0.8% to 2.0% agar) and beef shank samples under different loading forces and displacement amplitudes. Sample hysteresis was defined as the loss ratio (hysteresis loop area divided by the total loading energy). The loss ratio was primarily driven by the sample unloading response which decreased as loading energy increased. Samples were distinguishable based on their loss ratio responses as a function loading energy or displacement amplitude. Finite element analysis and mechanical testing methods were used to validate these observations. We further performed the OCE measurements on a beef shank tissue sample to distinguish the muscle and connective tissue components based on the displacement and hysteresis features. This novel, noninvasive OCE approach has the potential to differentiate soft tissues by quantifying their viscoelasticity using micron-scale transient tissue displacement dynamics. Focal tissue hysteresis measurements could provide additional clinically useful metrics for guiding disease diagnosis and tissue treatment responses.

摘要

我们提出了一种新型光学相干弹性成像(OCE)方法,用于基于瞬态(毫秒级)、低压(<20 Pa)非接触微升空气脉冲刺激和微米级样本位移来表征软组织的机械滞后现象。对软组织模型(0.8%至2.0%琼脂)和牛小腿样本在不同加载力和位移幅度下的能量耗散率(样本滞后)进行了量化。样本滞后定义为损失率(滞后回线面积除以总加载能量)。损失率主要由样本卸载响应驱动,该响应随着加载能量的增加而降低。根据样本作为加载能量或位移幅度函数的损失率响应,可以区分不同样本。使用有限元分析和力学测试方法对这些观察结果进行了验证。我们进一步对牛小腿组织样本进行了OCE测量,以基于位移和滞后特征区分肌肉和结缔组织成分。这种新型的非侵入性OCE方法有可能通过使用微米级瞬态组织位移动力学来量化软组织的粘弹性,从而区分不同软组织。局部组织滞后测量可为指导疾病诊断和组织治疗反应提供额外的临床有用指标。

相似文献

1
Micron-scale hysteresis measurement using dynamic optical coherence elastography.
Biomed Opt Express. 2022 Apr 25;13(5):3021-3041. doi: 10.1364/BOE.457617. eCollection 2022 May 1.
2
Dual-channel air-pulse optical coherence elastography for frequency-response analysis.
Biomed Opt Express. 2024 Apr 24;15(5):3301-3316. doi: 10.1364/BOE.520551. eCollection 2024 May 1.
3
Spatial Assessment of Heterogeneous Tissue Natural Frequency Using Micro-Force Optical Coherence Elastography.
Front Bioeng Biotechnol. 2022 Mar 11;10:851094. doi: 10.3389/fbioe.2022.851094. eCollection 2022.
5
Characterization of natural frequencies from nanoscale tissue oscillations using dynamic optical coherence elastography.
Biomed Opt Express. 2020 May 26;11(6):3301-3318. doi: 10.1364/BOE.391324. eCollection 2020 Jun 1.
6
Common-path phase-sensitive optical coherence tomography provides enhanced phase stability and detection sensitivity for dynamic elastography.
Biomed Opt Express. 2017 Oct 26;8(11):5253-5266. doi: 10.1364/BOE.8.005253. eCollection 2017 Nov 1.
7
Quantifying tissue viscoelasticity using optical coherence elastography and the Rayleigh wave model.
J Biomed Opt. 2016 Sep 1;21(9):90504. doi: 10.1117/1.JBO.21.9.090504.
8
Clinical Corneal Optical Coherence Elastography Measurement Precision: Effect of Heartbeat and Respiration.
Transl Vis Sci Technol. 2020 Apr 9;9(5):3. doi: 10.1167/tvst.9.5.3. eCollection 2020 Apr.
9
Quantitative methods for reconstructing tissue biomechanical properties in optical coherence elastography: a comparison study.
Phys Med Biol. 2015 May 7;60(9):3531-47. doi: 10.1088/0031-9155/60/9/3531. Epub 2015 Apr 10.
10
In Vivo Human Corneal Shear-wave Optical Coherence Elastography.
Optom Vis Sci. 2021 Jan 1;98(1):58-63. doi: 10.1097/OPX.0000000000001633.

引用本文的文献

2
Air-pulse optical coherence elastography: how excitation angle affects mechanical wave propagation.
Biomed Opt Express. 2025 Mar 11;16(4):1371-1391. doi: 10.1364/BOE.557984. eCollection 2025 Apr 1.
3
4
corneal elastography: A topical review of challenges and opportunities.
Comput Struct Biotechnol J. 2023 Apr 13;21:2664-2687. doi: 10.1016/j.csbj.2023.04.009. eCollection 2023.

本文引用的文献

1
Spatial Assessment of Heterogeneous Tissue Natural Frequency Using Micro-Force Optical Coherence Elastography.
Front Bioeng Biotechnol. 2022 Mar 11;10:851094. doi: 10.3389/fbioe.2022.851094. eCollection 2022.
3
Corneal biomechanics: Measurement and structural correlations.
Exp Eye Res. 2021 Apr;205:108508. doi: 10.1016/j.exer.2021.108508. Epub 2021 Feb 18.
4
In Vivo Human Corneal Shear-wave Optical Coherence Elastography.
Optom Vis Sci. 2021 Jan 1;98(1):58-63. doi: 10.1097/OPX.0000000000001633.
5
Diurnal variation of corneal elasticity in healthy young human using air-puff optical coherence elastography.
J Biophotonics. 2021 Aug;14(8):e202000440. doi: 10.1002/jbio.202000440. Epub 2021 May 16.
6
Multi-meridian corneal imaging of air-puff induced deformation for improved detection of biomechanical abnormalities.
Biomed Opt Express. 2020 Oct 14;11(11):6337-6355. doi: 10.1364/BOE.402402. eCollection 2020 Nov 1.
7
In vivo measurement of shear modulus of the human cornea using optical coherence elastography.
Sci Rep. 2020 Oct 15;10(1):17366. doi: 10.1038/s41598-020-74383-4.
8
Clinical Corneal Optical Coherence Elastography Measurement Precision: Effect of Heartbeat and Respiration.
Transl Vis Sci Technol. 2020 Apr 9;9(5):3. doi: 10.1167/tvst.9.5.3. eCollection 2020 Apr.
9
Characterization of natural frequencies from nanoscale tissue oscillations using dynamic optical coherence elastography.
Biomed Opt Express. 2020 May 26;11(6):3301-3318. doi: 10.1364/BOE.391324. eCollection 2020 Jun 1.
10
High-speed OCT-based ocular biometer combined with an air-puff system for determination of induced retraction-free eye dynamics.
Biomed Opt Express. 2019 Jun 27;10(7):3663-3680. doi: 10.1364/BOE.10.003663. eCollection 2019 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验