Department of Chemistry, University of California, Berkeley, California 94720, United States.
Department of Molecular & Cell Biology, University of California, Berkeley, California 94720, United States.
J Am Chem Soc. 2022 Jul 13;144(27):12138-12146. doi: 10.1021/jacs.2c02664. Epub 2022 Jul 1.
Electrical potential differences across lipid bilayers play foundational roles in cellular physiology. Plasma membrane voltage is the most widely studied; however, the bilayers of organelles like mitochondria, lysosomes, nuclei, and the endoplasmic reticulum (ER) also provide opportunities for ionic compartmentalization and the generation of transmembrane potentials. Unlike plasma membranes, organellar bilayers, cloistered within the cell, remain recalcitrant to traditional approaches like patch-clamp electrophysiology. To address the challenge of monitoring changes in organelle membrane potential, we describe the design, synthesis, and application of the LUnAR RhoVR (igation quenched for ctivation and edistribution damine-based oltage eporter) for optically monitoring membrane potential changes in the ER of living cells. We pair a tetrazine-quenched RhoVR for voltage sensing with a transcyclooctene (TCO)-conjugated ceramide (Cer-TCO) for targeting to the ER. Bright fluorescence is observed only at the coincidence of the LUnAR RhoVR and TCO in the ER, minimizing non-specific, off-target fluorescence. We show that the product of the LUnAR RhoVR and Cer-TCO is voltage-sensitive and that the LUnAR RhoVR can be targeted to an intact ER in living cells. Using the LUnAR RhoVR, we use two-color, ER-localized, fast voltage imaging coupled with cytosolic Ca imaging to validate the electroneutrality of Ca release from internal stores. Finally, we use the LUnAR RhoVR to directly visualize functional coupling between the plasma-ER membranes in patch clamped cell lines, providing the first direct evidence of the sign of the ER potential response to plasma membrane potential changes. We envision that the LUnAR RhoVR, along with other existing organelle-targeting TCO probes, could be applied widely for exploring organelle physiology.
脂质双层的跨膜电势差在细胞生理学中起着基础作用。质膜电压是研究最广泛的;然而,细胞器的双层,如线粒体、溶酶体、核和内质网 (ER),也为离子区室化和跨膜电位的产生提供了机会。与质膜不同,细胞器双层被隔离在细胞内,仍然难以用传统的方法,如膜片钳电生理学来研究。为了解决监测细胞器膜电位变化的挑战,我们设计、合成并应用了 LUnAR RhoVR(ligation quenched for activation and redistribution amine-based voltage reporter,用于激活和重新分布的胺基电压报告分子的连接淬灭),以光学监测活细胞内质网 (ER) 中的膜电位变化。我们将四嗪淬灭的 RhoVR 与转环辛烯 (TCO) 偶联的神经酰胺 (Cer-TCO) 配对,用于靶向 ER。只有当 LUnAR RhoVR 和 TCO 在 ER 中同时存在时,才能观察到明亮的荧光,从而最大限度地减少非特异性的、非靶向的荧光。我们表明,LUnAR RhoVR 和 Cer-TCO 的产物是电压敏感的,并且 LUnAR RhoVR 可以靶向活细胞中的完整 ER。使用 LUnAR RhoVR,我们使用双波长、ER 定位的快速电压成像与胞质 Ca 成像相结合,验证了内部储存库中 Ca 释放的电中性。最后,我们使用 LUnAR RhoVR 直接可视化在膜片钳细胞系中质膜 - ER 膜之间的功能偶联,提供了 ER 电位对质膜电位变化的响应的第一个直接证据。我们设想,LUnAR RhoVR 与其他现有的细胞器靶向 TCO 探针一起,可以广泛应用于探索细胞器生理学。