Suppr超能文献

生物正交、荧光靶向电压敏感荧光探针用于可视化细胞细胞器中的膜电位动力学。

Bioorthogonal, Fluorogenic Targeting of Voltage-Sensitive Fluorophores for Visualizing Membrane Potential Dynamics in Cellular Organelles.

机构信息

Department of Chemistry, University of California, Berkeley, California 94720, United States.

Department of Molecular & Cell Biology, University of California, Berkeley, California 94720, United States.

出版信息

J Am Chem Soc. 2022 Jul 13;144(27):12138-12146. doi: 10.1021/jacs.2c02664. Epub 2022 Jul 1.

Abstract

Electrical potential differences across lipid bilayers play foundational roles in cellular physiology. Plasma membrane voltage is the most widely studied; however, the bilayers of organelles like mitochondria, lysosomes, nuclei, and the endoplasmic reticulum (ER) also provide opportunities for ionic compartmentalization and the generation of transmembrane potentials. Unlike plasma membranes, organellar bilayers, cloistered within the cell, remain recalcitrant to traditional approaches like patch-clamp electrophysiology. To address the challenge of monitoring changes in organelle membrane potential, we describe the design, synthesis, and application of the LUnAR RhoVR (igation quenched for ctivation and edistribution damine-based oltage eporter) for optically monitoring membrane potential changes in the ER of living cells. We pair a tetrazine-quenched RhoVR for voltage sensing with a transcyclooctene (TCO)-conjugated ceramide (Cer-TCO) for targeting to the ER. Bright fluorescence is observed only at the coincidence of the LUnAR RhoVR and TCO in the ER, minimizing non-specific, off-target fluorescence. We show that the product of the LUnAR RhoVR and Cer-TCO is voltage-sensitive and that the LUnAR RhoVR can be targeted to an intact ER in living cells. Using the LUnAR RhoVR, we use two-color, ER-localized, fast voltage imaging coupled with cytosolic Ca imaging to validate the electroneutrality of Ca release from internal stores. Finally, we use the LUnAR RhoVR to directly visualize functional coupling between the plasma-ER membranes in patch clamped cell lines, providing the first direct evidence of the sign of the ER potential response to plasma membrane potential changes. We envision that the LUnAR RhoVR, along with other existing organelle-targeting TCO probes, could be applied widely for exploring organelle physiology.

摘要

脂质双层的跨膜电势差在细胞生理学中起着基础作用。质膜电压是研究最广泛的;然而,细胞器的双层,如线粒体、溶酶体、核和内质网 (ER),也为离子区室化和跨膜电位的产生提供了机会。与质膜不同,细胞器双层被隔离在细胞内,仍然难以用传统的方法,如膜片钳电生理学来研究。为了解决监测细胞器膜电位变化的挑战,我们设计、合成并应用了 LUnAR RhoVR(ligation quenched for activation and redistribution amine-based voltage reporter,用于激活和重新分布的胺基电压报告分子的连接淬灭),以光学监测活细胞内质网 (ER) 中的膜电位变化。我们将四嗪淬灭的 RhoVR 与转环辛烯 (TCO) 偶联的神经酰胺 (Cer-TCO) 配对,用于靶向 ER。只有当 LUnAR RhoVR 和 TCO 在 ER 中同时存在时,才能观察到明亮的荧光,从而最大限度地减少非特异性的、非靶向的荧光。我们表明,LUnAR RhoVR 和 Cer-TCO 的产物是电压敏感的,并且 LUnAR RhoVR 可以靶向活细胞中的完整 ER。使用 LUnAR RhoVR,我们使用双波长、ER 定位的快速电压成像与胞质 Ca 成像相结合,验证了内部储存库中 Ca 释放的电中性。最后,我们使用 LUnAR RhoVR 直接可视化在膜片钳细胞系中质膜 - ER 膜之间的功能偶联,提供了 ER 电位对质膜电位变化的响应的第一个直接证据。我们设想,LUnAR RhoVR 与其他现有的细胞器靶向 TCO 探针一起,可以广泛应用于探索细胞器生理学。

相似文献

1
2
Imaging Reversible Mitochondrial Membrane Potential Dynamics with a Masked Rhodamine Voltage Reporter.
J Am Chem Soc. 2021 Mar 24;143(11):4095-4099. doi: 10.1021/jacs.0c13110. Epub 2021 Mar 12.
3
Covalently Tethered Rhodamine Voltage Reporters for High Speed Functional Imaging in Brain Tissue.
J Am Chem Soc. 2020 Jan 8;142(1):614-622. doi: 10.1021/jacs.9b12265. Epub 2019 Dec 26.
4
Fluorescent Probes for Lipid Membranes: From the Cell Surface to Organelles.
Acc Chem Res. 2023 Jan 3;56(1):1-12. doi: 10.1021/acs.accounts.2c00586. Epub 2022 Dec 19.
5
Optical recordings of organellar membrane potentials and the components of membrane conductance in lysosomes.
J Physiol. 2024 Apr;602(8):1637-1654. doi: 10.1113/JP283825. Epub 2024 Apr 16.
6
Mechanosensitive Fluorescent Probes to Image Membrane Tension in Mitochondria, Endoplasmic Reticulum, and Lysosomes.
J Am Chem Soc. 2019 Feb 27;141(8):3380-3384. doi: 10.1021/jacs.8b13189. Epub 2019 Feb 12.
7
Isomerically Pure Tetramethylrhodamine Voltage Reporters.
J Am Chem Soc. 2016 Jul 27;138(29):9085-8. doi: 10.1021/jacs.6b05672. Epub 2016 Jul 18.
8
Organelle-Targeted Laurdans Measure Heterogeneity in Subcellular Membranes and Their Responses to Saturated Lipid Stress.
ACS Chem Biol. 2024 Aug 16;19(8):1773-1785. doi: 10.1021/acschembio.4c00249. Epub 2024 Jul 28.
9
Fluorescence methods for analysis of interactions between Ca(2+) signaling, lysosomes, and endoplasmic reticulum.
Methods Cell Biol. 2015;126:237-59. doi: 10.1016/bs.mcb.2014.10.024. Epub 2015 Jan 16.
10
Voltage Imaging in Using a Hybrid Chemical-Genetic Rhodamine Voltage Reporter.
Front Neurosci. 2021 Nov 16;15:754027. doi: 10.3389/fnins.2021.754027. eCollection 2021.

引用本文的文献

2
Seeing the Spikes: The Future of Targetable Synthetic Voltage Sensors.
ACS Chem Neurosci. 2025 Mar 5;16(5):761-771. doi: 10.1021/acschemneuro.4c00849. Epub 2025 Feb 13.
3
Fluorogenic Tetrazine Bioorthogonal Probes for Advanced Application in Bioimaging and Biomedicine.
Chem Biomed Imaging. 2024 Dec 23;3(1):1-4. doi: 10.1021/cbmi.4c00095. eCollection 2025 Jan 27.
4
Fluorogenic Reactions in Chemical Biology: Seeing Chemistry in Cells.
Chem Biomed Imaging. 2023 May 30;1(7):590-619. doi: 10.1021/cbmi.3c00029. eCollection 2023 Oct 23.
5
Chemo-Click: Receptor-Controlled and Bioorthogonal Chemokine Ligation for Real-Time Imaging of Drug-Resistant Leukemic B Cells.
J Am Chem Soc. 2024 Nov 6;146(44):30565-30572. doi: 10.1021/jacs.4c12035. Epub 2024 Oct 23.
6
Role of lipids in interorganelle communication.
Trends Cell Biol. 2025 Jan;35(1):46-58. doi: 10.1016/j.tcb.2024.04.008. Epub 2024 Jun 11.
7
Bioorthogonal Chemistry in Cellular Organelles.
Top Curr Chem (Cham). 2023 Dec 16;382(1):2. doi: 10.1007/s41061-023-00446-5.
8
Ultrabright two-photon excitable red-emissive fluorogenic probes for fast and wash-free bioorthogonal labelling in live cells.
Chem Sci. 2023 Jul 4;14(30):8119-8128. doi: 10.1039/d3sc01754k. eCollection 2023 Aug 2.
9
Application Prospects of Triphenylphosphine-Based Mitochondria-Targeted Cancer Therapy.
Cancers (Basel). 2023 Jan 21;15(3):666. doi: 10.3390/cancers15030666.
10
Electrical signals in the ER are cell type and stimulus specific with extreme spatial compartmentalization in neurons.
Cell Rep. 2023 Jan 31;42(1):111943. doi: 10.1016/j.celrep.2022.111943. Epub 2023 Jan 5.

本文引用的文献

1
Recent Advances in Chemical Biology of Mitochondria Targeting.
Front Chem. 2021 May 3;9:683220. doi: 10.3389/fchem.2021.683220. eCollection 2021.
2
Imaging the electrical activity of organelles in living cells.
Commun Biol. 2021 Mar 23;4(1):389. doi: 10.1038/s42003-021-01916-6.
3
Imaging Reversible Mitochondrial Membrane Potential Dynamics with a Masked Rhodamine Voltage Reporter.
J Am Chem Soc. 2021 Mar 24;143(11):4095-4099. doi: 10.1021/jacs.0c13110. Epub 2021 Mar 12.
4
Fluorescence Quenching Effects of Tetrazines and Their Diels-Alder Products: Mechanistic Insight Toward Fluorogenic Efficiency.
Angew Chem Int Ed Engl. 2020 Dec 1;59(49):22140-22149. doi: 10.1002/anie.202008757. Epub 2020 Sep 29.
5
A DNA-based voltmeter for organelles.
Nat Nanotechnol. 2021 Jan;16(1):96-103. doi: 10.1038/s41565-020-00784-1. Epub 2020 Nov 2.
6
ESCargo: a regulatable fluorescent secretory cargo for diverse model organisms.
Mol Biol Cell. 2020 Dec 15;31(26):2892-2903. doi: 10.1091/mbc.E20-09-0591. Epub 2020 Oct 28.
7
Covalently Tethered Rhodamine Voltage Reporters for High Speed Functional Imaging in Brain Tissue.
J Am Chem Soc. 2020 Jan 8;142(1):614-622. doi: 10.1021/jacs.9b12265. Epub 2019 Dec 26.
9
Fluorescent probes for organelle-targeted bioactive species imaging.
Chem Sci. 2019 May 24;10(24):6035-6071. doi: 10.1039/c9sc01652j. eCollection 2019 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验