Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico.
National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland.
Biophys J. 2022 Oct 4;121(19):3630-3650. doi: 10.1016/j.bpj.2022.06.035. Epub 2022 Jul 1.
During the activation of mitogen-activated protein kinase (MAPK) signaling, the RAS-binding domain (RBD) and cysteine-rich domain (CRD) of RAF bind to active RAS at the plasma membrane. The orientation of RAS at the membrane may be critical for formation of the RAS-RBDCRD complex and subsequent signaling. To explore how RAS membrane orientation relates to the protein dynamics within the RAS-RBDCRD complex, we perform multiscale coarse-grained and all-atom molecular dynamics (MD) simulations of KRAS4b bound to the RBD and CRD domains of RAF-1, both in solution and anchored to a model plasma membrane. Solution MD simulations describe dynamic KRAS4b-CRD conformations, suggesting that the CRD has sufficient flexibility in this environment to substantially change its binding interface with KRAS4b. In contrast, when the ternary complex is anchored to the membrane, the mobility of the CRD relative to KRAS4b is restricted, resulting in fewer distinct KRAS4b-CRD conformations. These simulations implicate membrane orientations of the ternary complex that are consistent with NMR measurements. While a crystal structure-like conformation is observed in both solution and membrane simulations, a particular intermolecular rearrangement of the ternary complex is observed only when it is anchored to the membrane. This configuration emerges when the CRD hydrophobic loops are inserted into the membrane and helices α3-5 of KRAS4b are solvent exposed. This membrane-specific configuration is stabilized by KRAS4b-CRD contacts that are not observed in the crystal structure. These results suggest modulatory interplay between the CRD and plasma membrane that correlate with RAS/RAF complex structure and dynamics, and potentially influence subsequent steps in the activation of MAPK signaling.
在丝裂原活化蛋白激酶 (MAPK) 信号转导的激活过程中,RAF 的 RAS 结合域 (RBD) 和富含半胱氨酸域 (CRD) 与质膜上的活性 RAS 结合。RAS 在膜上的取向对于 RAS-RBDCRD 复合物的形成和随后的信号转导可能至关重要。为了探讨 RAS 膜取向与 RAS-RBDCRD 复合物内蛋白动力学之间的关系,我们对 KRAS4b 与 RAF-1 的 RBD 和 CRD 域结合进行了多尺度粗粒化和全原子分子动力学 (MD) 模拟,这些模拟分别在溶液中和锚定在模型质膜上进行。溶液 MD 模拟描述了 KRAS4b-CRD 构象的动态变化,表明在这种环境下,CRD 具有足够的灵活性,可以实质性地改变其与 KRAS4b 的结合界面。相比之下,当三元复合物锚定在膜上时,CRD 相对于 KRAS4b 的迁移率受到限制,导致 KRAS4b-CRD 构象的数量减少。这些模拟表明,三元复合物的膜取向与 NMR 测量结果一致。虽然在溶液和膜模拟中都观察到类似于晶体结构的构象,但只有当三元复合物被锚定时,才会观察到特定的分子间重新排列。当 CRD 疏水性环插入膜中并且 KRAS4b 的α3-5 螺旋暴露于溶剂中时,就会出现这种配置。这种膜特异性构象由 KRAS4b-CRD 相互作用稳定,而这些相互作用在晶体结构中观察不到。这些结果表明,CRD 与质膜之间存在调节相互作用,这种作用与 RAS/RAF 复合物的结构和动力学相关,并且可能影响 MAPK 信号转导的后续步骤。