Suppr超能文献

TOR 激酶是复杂的营养和激素信号网络中的 GPS,指导植物生长和发育。

TOR kinase, a GPS in the complex nutrient and hormonal signaling networks to guide plant growth and development.

机构信息

College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.

Haixia Institute of Science and Technology, Plant Synthetic Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China.

出版信息

J Exp Bot. 2022 Nov 15;73(20):7041-7054. doi: 10.1093/jxb/erac282.

Abstract

To survive and sustain growth, sessile plants have developed sophisticated internal signalling networks that respond to various external and internal cues. Despite the central roles of nutrient and hormone signaling in plant growth and development, how hormone-driven processes coordinate with metabolic status remains largely enigmatic. Target of rapamycin (TOR) kinase is an evolutionarily conserved master regulator that integrates energy, nutrients, growth factors, hormones, and stress signals to promote growth in all eukaryotes. Inspired by recent comprehensive systems, chemical, genetic, and genomic studies on TOR in plants, this review discusses a potential role of TOR as a 'global positioning system' that directs plant growth and developmental programs both temporally and spatially by integrating dynamic information in the complex nutrient and hormonal signaling networks. We further evaluate and depict the possible functional and mechanistic models for how a single protein kinase, TOR, is able to recognize, integrate, and even distinguish a plethora of positive and negative input signals to execute appropriate and distinct downstream biological processes via multiple partners and effectors.

摘要

为了生存和维持生长,固着植物已经发展出复杂的内部信号网络,以响应各种外部和内部信号。尽管营养和激素信号在植物生长和发育中起着核心作用,但激素驱动的过程如何与代谢状态协调仍然很大程度上是个谜。雷帕霉素靶蛋白(TOR)激酶是一种进化上保守的主要调节剂,它整合能量、营养物质、生长因子、激素和应激信号,以促进所有真核生物的生长。受植物中 TOR 的最新综合系统、化学、遗传和基因组研究的启发,本文讨论了 TOR 作为“全球定位系统”的潜在作用,通过整合复杂的营养和激素信号网络中的动态信息,在时间和空间上指导植物的生长和发育程序。我们进一步评估和描绘了可能的功能和机制模型,即如何通过多个伙伴和效应物,单个蛋白激酶 TOR 能够识别、整合甚至区分大量正、负输入信号,以执行适当和不同的下游生物学过程。

相似文献

2
Plant target of rapamycin signaling network: Complexes, conservations, and specificities.
J Integr Plant Biol. 2022 Feb;64(2):342-370. doi: 10.1111/jipb.13212.
3
A Tour of TOR Complex Signaling in Plants.
Trends Biochem Sci. 2021 May;46(5):417-428. doi: 10.1016/j.tibs.2020.11.004. Epub 2020 Dec 9.
5
Roles of TOR signaling in nutrient deprivation and abiotic stress.
J Plant Physiol. 2022 Jul;274:153716. doi: 10.1016/j.jplph.2022.153716. Epub 2022 May 12.
6
Integration of nutrient, energy, light, and hormone signalling via TOR in plants.
J Exp Bot. 2019 Apr 15;70(8):2227-2238. doi: 10.1093/jxb/erz028.
7
TOR signaling in plants: conservation and innovation.
Development. 2018 Jul 9;145(13):dev160887. doi: 10.1242/dev.160887.
8
The role of target of rapamycin signaling networks in plant growth and metabolism.
Plant Physiol. 2014 Feb;164(2):499-512. doi: 10.1104/pp.113.229948. Epub 2014 Jan 2.
9
TOR Signaling and Nutrient Sensing.
Annu Rev Plant Biol. 2016 Apr 29;67:261-85. doi: 10.1146/annurev-arplant-043014-114648. Epub 2016 Feb 22.
10
TOR in plants: Multidimensional regulators of plant growth and signaling pathways.
J Plant Physiol. 2024 Mar;294:154186. doi: 10.1016/j.jplph.2024.154186. Epub 2024 Feb 3.

引用本文的文献

2
Principles of signal integration in combinatorial stress acclimatization.
Philos Trans R Soc Lond B Biol Sci. 2025 May 29;380(1927):20240243. doi: 10.1098/rstb.2024.0243.
3
TOR Mediates Stress Responses Through Global Regulation of Metabolome in Plants.
Int J Mol Sci. 2025 Feb 27;26(5):2095. doi: 10.3390/ijms26052095.
4
The TOR signalling pathway in fungal phytopathogens: A target for plant disease control.
Mol Plant Pathol. 2024 Nov;25(11):e70024. doi: 10.1111/mpp.70024.
6
Mitigating growth-stress tradeoffs via elevated TOR signaling in rice.
Mol Plant. 2024 Feb 5;17(2):240-257. doi: 10.1016/j.molp.2023.12.002. Epub 2023 Dec 5.
7
TORC pathway intersects with a calcium sensor kinase network to regulate potassium sensing in .
Proc Natl Acad Sci U S A. 2023 Nov 21;120(47):e2316011120. doi: 10.1073/pnas.2316011120. Epub 2023 Nov 15.
9
The carbon balance of plants: economics, optimization, and trait spectra in a historical perspective.
Oecologia. 2023 Dec;203(3-4):297-310. doi: 10.1007/s00442-023-05458-y. Epub 2023 Oct 24.
10
Coordination of carbon assimilation, allocation, and utilization for systemic improvement of cereal yield.
Front Plant Sci. 2023 Sep 5;14:1206829. doi: 10.3389/fpls.2023.1206829. eCollection 2023.

本文引用的文献

1
Sulfate-TOR signaling controls transcriptional reprogramming for shoot apex activation.
New Phytol. 2022 Nov;236(4):1326-1338. doi: 10.1111/nph.18441. Epub 2022 Sep 9.
2
Plant target of rapamycin signaling network: Complexes, conservations, and specificities.
J Integr Plant Biol. 2022 Feb;64(2):342-370. doi: 10.1111/jipb.13212.
3
Dynamic Nutrient Signaling Networks in Plants.
Annu Rev Cell Dev Biol. 2021 Oct 6;37:341-367. doi: 10.1146/annurev-cellbio-010521-015047. Epub 2021 Aug 5.
4
Sugar inhibits brassinosteroid signaling by enhancing BIN2 phosphorylation of BZR1.
PLoS Genet. 2021 May 14;17(5):e1009540. doi: 10.1371/journal.pgen.1009540. eCollection 2021 May.
5
Activation of TOR signaling by diverse nitrogen signals in plants.
Dev Cell. 2021 May 3;56(9):1213-1214. doi: 10.1016/j.devcel.2021.04.014.
6
Diverse nitrogen signals activate convergent ROP2-TOR signaling in Arabidopsis.
Dev Cell. 2021 May 3;56(9):1283-1295.e5. doi: 10.1016/j.devcel.2021.03.022. Epub 2021 Apr 7.
7
Shared Components of the FRQ-Less Oscillator and TOR Pathway Maintain Rhythmicity in .
J Biol Rhythms. 2021 Aug;36(4):329-345. doi: 10.1177/0748730421999948. Epub 2021 Apr 7.
8
The TOR-EIN2 axis mediates nuclear signalling to modulate plant growth.
Nature. 2021 Mar;591(7849):288-292. doi: 10.1038/s41586-021-03310-y. Epub 2021 Mar 3.
9
The tip of the iceberg: emerging roles of TORC1, and its regulatory functions in plant cells.
J Exp Bot. 2021 May 18;72(11):4085-4101. doi: 10.1093/jxb/eraa603.
10
Wheat Germination Is Dependent on Plant Target of Rapamycin Signaling.
Front Cell Dev Biol. 2020 Nov 23;8:606685. doi: 10.3389/fcell.2020.606685. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验