Suppr超能文献

氮化硅通过增加表面能以及形成酰胺和纳米晶羟基磷灰石促进骨祖细胞生长和分化,用于颅面重建。

Silicon nitride enhances osteoprogenitor cell growth and differentiation via increased surface energy and formation of amide and nanocrystalline HA for craniofacial reconstruction.

作者信息

Awad Kamal R, Ahuja Neelam, Shah Ami, Tran Henry, Aswath Pranesh B, Brotto Marco, Varanasi Venu

机构信息

Department of Material Science and Engineering, University of Texas at Arlington, Arlington, Texas.

Department of Refractories and Ceramics, National Research Centre, Giza, Egypt.

出版信息

Med Devices Sens. 2019 Apr;2(2). doi: 10.1002/mds3.10032. Epub 2019 May 6.

Abstract

The bioactive silicon nitride (SiN) has been FDA cleared for use as spinal intervertebral arthrodesis devices. Because its surface properties promote bone ongrowth and ingrowth, it also has the potential to benefit craniofacial reconstruction. Thus, the aim of this work was to determine whether the surface properties of SiN could enhance the osteoblast cell growth, differentiation and nucleation of hydroxyapatite (HA) crystals compared to conventional implant materials such as titanium (Ti) and polyether ether ketone (PEEK). X-ray absorbance near-edge structure analysis (XANES) indicated the presence of Si-Si, Si-O and Si-N bonding. Surface wettability studies confirmed that SiN exhibits the lowest contact angle and highest surface energy. Cell culture studies showed that osteoblast growth was enhanced on SiN after 1 day and up to 7 days. SiN surface induced highest surface coverage and thickness of nanocrystalline HA (211) and (203) in cell-free in vitro studies after 7 days of culture. Raman spectroscopy analysis confirmed the presence of surface functional groups consisting of phosphate and carbonate species. Interestingly, SiN surface showed amide and hydroxyproline groups, the precursors to collagen, which were not observed on Ti and PEEK surfaces. Furthermore, SiN surface indicated high expression of RUNX2, enhanced cell differentiation and dense collagenous ECM after 30 days of the in vitro study. The present study concluded that SiN surface enhances osteoprogenitor cell adhesion, growth, RUNX2 expression and ECM formation via the coupled effects of higher surface energy and the presence of amide and nanocrystalline HA functional groups.

摘要

生物活性氮化硅(SiN)已获得美国食品药品监督管理局(FDA)批准,可用于脊柱椎间融合装置。由于其表面特性可促进骨的附着和向内生长,它也有潜力造福颅面重建。因此,本研究的目的是确定与传统植入材料如钛(Ti)和聚醚醚酮(PEEK)相比,SiN的表面特性是否能增强成骨细胞的生长、分化以及羟基磷灰石(HA)晶体的成核。X射线吸收近边结构分析(XANES)表明存在Si-Si、Si-O和Si-N键。表面润湿性研究证实SiN表现出最低的接触角和最高的表面能。细胞培养研究表明,成骨细胞在SiN上培养1天后至7天内生长得到增强。在无细胞体外培养7天后的研究中,SiN表面诱导出最高的纳米晶HA(211)和(203)表面覆盖率和厚度。拉曼光谱分析证实存在由磷酸盐和碳酸盐物种组成的表面官能团。有趣的是,SiN表面显示出酰胺和羟脯氨酸基团,这是胶原蛋白的前体,而在Ti和PEEK表面未观察到。此外,在体外研究30天后,SiN表面显示RUNX2高表达,增强了细胞分化并形成致密的胶原细胞外基质(ECM)。本研究得出结论,SiN表面通过更高表面能以及酰胺和纳米晶HA官能团的耦合作用,增强了骨祖细胞的粘附、生长、RUNX2表达和ECM形成。

相似文献

2
A comparative study on silicon nitride, titanium and polyether ether ketone on mouse pre-osteoblast cells.
Med Devices Sens. 2021 Feb;4(1). doi: 10.1002/mds3.10139. Epub 2020 Oct 22.
3
Human osteoblasts grow transitional Si/N apatite in quickly osteointegrated SiN cervical insert.
Acta Biomater. 2017 Dec;64:411-420. doi: 10.1016/j.actbio.2017.09.038. Epub 2017 Sep 27.
4
Anti-infective and osteointegration properties of silicon nitride, poly(ether ether ketone), and titanium implants.
Acta Biomater. 2012 Dec;8(12):4447-54. doi: 10.1016/j.actbio.2012.07.038. Epub 2012 Jul 31.
5
Surface etching, chemical modification and characterization of silicon nitride and silicon oxide--selective functionalization of Si3N4 and SiO2.
J Phys Condens Matter. 2016 Mar 9;28(9):094014. doi: 10.1088/0953-8984/28/9/094014. Epub 2016 Feb 12.
6
Improved response of osteoprogenitor cells to titanium plasma-sprayed PEEK surfaces.
Colloids Surf B Biointerfaces. 2019 Mar 1;175:509-516. doi: 10.1016/j.colsurfb.2018.12.037. Epub 2018 Dec 13.
7
Surface modulation of silicon nitride ceramics for orthopaedic applications.
Acta Biomater. 2015 Oct;26:318-30. doi: 10.1016/j.actbio.2015.08.014. Epub 2015 Aug 21.
9
Magnetron co-sputtered silicon-containing hydroxyapatite thin films--an in vitro study.
Biomaterials. 2005 Jun;26(16):2947-56. doi: 10.1016/j.biomaterials.2004.07.058.

引用本文的文献

3
3D-Printed PEEK/Silicon Nitride Scaffolds with a Triply Periodic Minimal Surface Structure for Spinal Fusion Implants.
ACS Appl Bio Mater. 2023 Aug 21;6(8):3319-3329. doi: 10.1021/acsabm.3c00383. Epub 2023 Aug 10.
4
Revolutionizing bone regeneration: advanced biomaterials for healing compromised bone defects.
Front Aging. 2023 Jul 14;4:1217054. doi: 10.3389/fragi.2023.1217054. eCollection 2023.
5
Silicon Nitride Ceramics: Structure, Synthesis, Properties, and Biomedical Applications.
Materials (Basel). 2023 Jul 21;16(14):5142. doi: 10.3390/ma16145142.
6
A comparative study on silicon nitride, titanium and polyether ether ketone on mouse pre-osteoblast cells.
Med Devices Sens. 2021 Feb;4(1). doi: 10.1002/mds3.10139. Epub 2020 Oct 22.
8
Interfacial adhesion and surface bioactivity of anodized titanium modified with SiON and SiONP surface coatings.
Surf Interfaces. 2022 Feb;28. doi: 10.1016/j.surfin.2021.101645. Epub 2021 Nov 28.
9
Silicon Nitride, a Bioceramic for Bone Tissue Engineering: A Reinforced Cryogel System With Antibiofilm and Osteogenic Effects.
Front Bioeng Biotechnol. 2021 Dec 15;9:794586. doi: 10.3389/fbioe.2021.794586. eCollection 2021.
10
Wettability and study of titanium surface profiling prepared by electrolytic plasma processing.
Surf Coat Technol. 2021 May 25;414. doi: 10.1016/j.surfcoat.2021.127119. Epub 2021 Mar 31.

本文引用的文献

1
In Situ Spectroscopic Screening of Osteosarcoma Living Cells on Stoichiometry-Modulated Silicon Nitride Bioceramic Surfaces.
ACS Biomater Sci Eng. 2016 Jul 11;2(7):1121-1134. doi: 10.1021/acsbiomaterials.6b00126. Epub 2016 Jun 29.
2
Surface topography of silicon nitride affects antimicrobial and osseointegrative properties of tibial implants in a murine model.
J Biomed Mater Res A. 2017 Dec;105(12):3413-3421. doi: 10.1002/jbm.a.36189. Epub 2017 Sep 26.
3
Role of Hydrogen and Nitrogen on the Surface Chemical Structure of Bioactive Amorphous Silicon Oxynitride Films.
J Phys Chem B. 2017 Sep 28;121(38):8991-9005. doi: 10.1021/acs.jpcb.7b05885. Epub 2017 Sep 14.
6
Development of a SiYAlON glaze for improved osteoconductivity of implantable medical devices.
J Biomed Mater Res B Appl Biomater. 2018 Apr;106(3):1084-1096. doi: 10.1002/jbm.b.33914. Epub 2017 May 15.
7
Antibacterial and bioactive coatings on titanium implant surfaces.
J Biomed Mater Res A. 2017 Aug;105(8):2218-2227. doi: 10.1002/jbm.a.36081. Epub 2017 May 17.
8
Cranioplasty: Review of Materials.
J Craniofac Surg. 2016 Nov;27(8):2061-2072. doi: 10.1097/SCS.0000000000003025.
9
Bacteriostatic behavior of surface modulated silicon nitride in comparison to polyetheretherketone and titanium.
J Biomed Mater Res A. 2017 May;105(5):1521-1534. doi: 10.1002/jbm.a.35987. Epub 2017 Mar 20.
10
Silicon Nitride: A Synthetic Mineral for Vertebrate Biology.
Sci Rep. 2016 Aug 19;6:31717. doi: 10.1038/srep31717.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验