Suppr超能文献

基于卷积协同 BP 神经网络的人力资源招聘需求预测模型。

A Prediction Model of Human Resources Recruitment Demand Based on Convolutional Collaborative BP Neural Network.

机构信息

Shandong Youth University of Political Science, Jinan, Shandong 250103, China.

University of International Business and Economics, Beijing 100029, China.

出版信息

Comput Intell Neurosci. 2022 Jun 24;2022:3620312. doi: 10.1155/2022/3620312. eCollection 2022.

Abstract

This paper presents an in-depth study and analysis of the prediction model of force resource recruitment demand using a convolutional neural network combined with a BP neural network algorithm. BP neural network technology is introduced to be applied to enterprise management talent assessment activities. Using BP neural network has strong parallel processing characteristics, as well as unique adaptive learning and feedback adjustment capabilities while combining the traditional enterprise talent assessment system, to build a business management talent assessment model based on BP neural network technology, to circumvent the possible influence of subjective factors in talent assessment, reduce assessment errors, and improve the accuracy and validity of the assessment. The first layer of convolutional layers may only extract some low-level features such as edges, lines, and corners, and more layers of the network can iteratively extract more complex features from low-level features. The constructed applicant reputation evaluation model based on multiplicative long- and short-term recurrent neural network and the hybrid project recommendation model based on conditional variational self-encoder were experimented on Freelancer's dataset for effectiveness, respectively, and the experimental results showed that the proposed employer hiring decision model, reputation analysis model, and applicant project recommendation model have more reliable performance compared with the existing models. The research results achieve more efficient matching of labor supply and demand in the online labor market and provide technical support for the online labor market platform to realize personalized, intelligent, and accurate services for both employers and applicants.

摘要

本文深入研究并分析了利用卷积神经网络与 BP 神经网络算法相结合的方法对力资源招聘需求进行预测的模型。将 BP 神经网络技术引入企业管理人才评估活动中。BP 神经网络技术具有强大的并行处理特性,以及独特的自适应学习和反馈调整能力,结合传统的企业人才评估系统,构建基于 BP 神经网络技术的企业管理人才评估模型,规避人才评估中可能存在的主观因素的影响,减少评估误差,提高评估的准确性和有效性。卷积层的第一层可能仅提取边缘、线条和角等一些低级特征,而网络的更多层可以从低级特征中迭代地提取更复杂的特征。在 Freelancer 数据集上对基于乘法长短时循环神经网络的申请人声誉评估模型和基于条件变分自编码器的混合项目推荐模型分别进行了实验,实验结果表明,与现有模型相比,所提出的雇主招聘决策模型、声誉分析模型和申请人项目推荐模型具有更可靠的性能。研究成果实现了在线劳动力市场中劳动力供求的更高效匹配,为在线劳动力市场平台为雇主和申请人实现个性化、智能化和精准服务提供了技术支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5585/9249465/017eb3b23c42/CIN2022-3620312.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验