Suppr超能文献

基于全基因组汇总统计数据,针对多效性和样本结构进行因果推断的孟德尔随机化方法。

Mendelian randomization for causal inference accounting for pleiotropy and sample structure using genome-wide summary statistics.

机构信息

Department of Mathematics, The Hong Kong University of Science and Technology, The Hong Kong Special Administrative Region, China.

Department of Statistics, The Chinese University of Hong Kong, The Hong Kong Special Administrative Region, China.

出版信息

Proc Natl Acad Sci U S A. 2022 Jul 12;119(28):e2106858119. doi: 10.1073/pnas.2106858119. Epub 2022 Jul 5.

Abstract

Mendelian randomization (MR) is a valuable tool for inferring causal relationships among a wide range of traits using summary statistics from genome-wide association studies (GWASs). Existing summary-level MR methods often rely on strong assumptions, resulting in many false-positive findings. To relax MR assumptions, ongoing research has been primarily focused on accounting for confounding due to pleiotropy. Here, we show that sample structure is another major confounding factor, including population stratification, cryptic relatedness, and sample overlap. We propose a unified MR approach, MR-APSS, which 1) accounts for pleiotropy and sample structure simultaneously by leveraging genome-wide information; and 2) allows the inclusion of more genetic variants with moderate effects as instrument variables (IVs) to improve statistical power without inflating type I errors. We first evaluated MR-APSS using comprehensive simulations and negative controls and then applied MR-APSS to study the causal relationships among a collection of diverse complex traits. The results suggest that MR-APSS can better identify plausible causal relationships with high reliability. In particular, MR-APSS can perform well for highly polygenic traits, where the IV strengths tend to be relatively weak and existing summary-level MR methods for causal inference are vulnerable to confounding effects.

摘要

孟德尔随机化(Mendelian randomization,MR)是一种利用全基因组关联研究(genome-wide association studies,GWAS)汇总统计数据推断广泛特征之间因果关系的有效工具。现有的汇总水平 MR 方法通常依赖于严格的假设,导致许多假阳性发现。为了放宽 MR 假设,正在进行的研究主要集中在解释由于多效性引起的混杂。在这里,我们表明样本结构是另一个主要的混杂因素,包括群体分层、隐性亲缘关系和样本重叠。我们提出了一种统一的 MR 方法 MR-APSS,它 1)通过利用全基因组信息同时考虑多效性和样本结构;2)允许纳入更多具有中等效应的遗传变异作为工具变量(instrumental variables,IVs),以提高统计功效而不会增加 I 型错误。我们首先使用综合模拟和负对照来评估 MR-APSS,然后将 MR-APSS 应用于研究一系列不同复杂特征之间的因果关系。结果表明,MR-APSS 可以更好地识别具有高可靠性的合理因果关系。特别是,MR-APSS 可以很好地处理高度多基因特征,其中 IV 强度往往相对较弱,而现有的用于因果推断的汇总水平 MR 方法容易受到混杂效应的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08e7/9282238/76d0342ef786/pnas.2106858119fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验