Vattikuti Urology Institute Center for Outcomes Research, Analytics and Evaluation (VCORE), Vattikuti Urology Institute, Henry Ford Health System, Detroit, Michigan, USA.
Department of Surgery, Oncology and Gastroenterology-Urology, University Hospital of Padova, Padova, Italy.
Prostate. 2022 Sep;82(13):1293-1303. doi: 10.1002/pros.24403. Epub 2022 Jul 5.
Generalizable, updated, and easy-to-use prognostic models for patients with metastatic castration-resistant prostate cancer (mCRPC) are lacking. We developed a nomogram predicting the overall survival (OS) of mCRPC patients receiving standard chemotherapy using data from five randomized clinical trials (RCTs).
Patients enrolled in the control arm of five RCTs (ASCENT 2, VENICE, CELGENE/MAINSAIL, ENTHUSE 14, and ENTHUSE 33) were randomly split between training (n = 1636, 70%) and validation cohorts (n = 700, 30%). In the training cohort, Cox regression tested the prognostic significance of all available variables as a predictor of OS. Independent predictors of OS on multivariable analysis were used to construct a novel multivariable model (nomogram). The accuracy of this model was tested in the validation cohort using time-dependent area under the curve (tAUC) and calibration curves.
Most of the patients were aged 65-74 years (44.5%) and the median (interquartile range) follow-up time was 13.9 (8.9-20.2) months. At multivariable analysis, the following were independent predictors of OS in mCRPC patients: sites of metastasis (visceral vs. bone metastasis, hazard ratio [HR]: 1.24), prostate-specific antigen (HR: 1.00), aspartate transaminase (HR: 1.01), alkaline phosphatase (HR: 1.00), body mass index (HR: 0.97), and hemoglobin (≥13 g/dl vs. <11 g/dl, HR: 0.41; all p < 0.05). A nomogram based on these variables was developed and showed favorable discrimination (tAUC at 12 and 24 months: 73% and 72%, respectively) and calibration characteristics on external validation.
A new prognostic model to predict OS of patients with mCRPC undergoing first line chemotherapy was developed. This can help urologists/oncologists in counseling patients and might be useful to better stratify patients for future clinical trials.
目前缺乏适用于转移性去势抵抗性前列腺癌(mCRPC)患者的可推广、更新且易于使用的预后模型。本研究旨在利用五项随机临床试验(RCT)的数据,开发一种预测接受标准化疗的 mCRPC 患者总生存期(OS)的列线图。
将五项 RCT(ASCENT 2、VENICE、CELGENE/MAINSAIL、ENTHUSE 14 和 ENTHUSE 33)的对照组患者随机分为训练队列(n=1636,70%)和验证队列(n=700,30%)。在训练队列中,Cox 回归检验了所有可用变量作为 OS 预测因子的预后意义。多变量分析中的独立 OS 预测因子用于构建新的多变量模型(列线图)。使用时间依赖性曲线下面积(tAUC)和校准曲线在验证队列中测试该模型的准确性。
大多数患者年龄为 65-74 岁(44.5%),中位(四分位间距)随访时间为 13.9(8.9-20.2)个月。多变量分析显示,mCRPC 患者的 OS 独立预测因子包括转移部位(内脏转移与骨转移,风险比[HR]:1.24)、前列腺特异性抗原(HR:1.00)、天冬氨酸转氨酶(HR:1.01)、碱性磷酸酶(HR:1.00)、体质指数(HR:0.97)和血红蛋白(≥13 g/dl 与 <11 g/dl,HR:0.41;均 p<0.05)。基于这些变量开发了列线图,其在外部验证中具有良好的区分度(12 个月和 24 个月时的 tAUC:分别为 73%和 72%)和校准特征。
本研究开发了一种新的预测 mCRPC 患者接受一线化疗后 OS 的预后模型。这有助于泌尿科医生/肿瘤学家为患者提供咨询,并可能有助于更好地对患者进行分层,以进行未来的临床试验。