Suppr超能文献

一种 pH 驱动的小分子纳米转导器劫持溶酶体并克服癌症中的自噬诱导耐药性。

A pH-Driven Small-Molecule Nanotransformer Hijacks Lysosomes and Overcomes Autophagy-Induced Resistance in Cancer.

机构信息

Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine Shandong University, Jinan, Shandong, 250012, China.

Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA.

出版信息

Angew Chem Int Ed Engl. 2022 Aug 26;61(35):e202204567. doi: 10.1002/anie.202204567. Epub 2022 Jul 20.

Abstract

Smart conversion of supramolecular structures in vivo is an attractive strategy in cancer nanomedicine, which is usually achieved via specific peptide sequences. Here we developed a lysosomal targeting small-molecule conjugate, PBC, which self-assembles into nanoparticles at physiological pH and smartly converts to nanofibrils in lysosomes of tumor cells. Such a transformation mechanically leads to lysosomal dysfunction, autophagy inhibition, and unusual cytoplasmic vacuolation, thus granting PBC a unique anticancer activity as a monotherapy. Importantly, the photo-activated PBC elicits significant phototoxicity to lysosomes and shows enormous advantages in overcoming autophagy-caused treatment resistance frequently occurring in conventional phototherapy. This improved phototherapy achieves a complete cure of oral cancer xenografts upon limited administration. Our work provides a new paradigm for the construction of nonpeptide nanotransformers with biomedical activities.

摘要

在癌症纳米医学中,智能转换体内的超分子结构是一种很有吸引力的策略,通常通过特定的肽序列来实现。在这里,我们开发了一种溶酶体靶向小分子偶联物 PBC,它在生理 pH 值下自组装成纳米颗粒,并在肿瘤细胞的溶酶体中智能地转换为纳米纤维。这种转变会导致溶酶体功能障碍、自噬抑制和异常细胞质空泡化,从而使 PBC 具有独特的抗癌活性,可作为单一疗法使用。重要的是,光激活的 PBC 会引发溶酶体的显著光毒性,并在克服传统光疗中经常发生的自噬引起的治疗耐药性方面具有巨大优势。这种改良的光疗在有限的给药后实现了口腔癌异种移植物的完全治愈。我们的工作为构建具有生物医学活性的非肽纳米转化体提供了一个新的范例。

相似文献

1
A pH-Driven Small-Molecule Nanotransformer Hijacks Lysosomes and Overcomes Autophagy-Induced Resistance in Cancer.
Angew Chem Int Ed Engl. 2022 Aug 26;61(35):e202204567. doi: 10.1002/anie.202204567. Epub 2022 Jul 20.
3
Typical and Atypical Inducers of Lysosomal Cell Death: A Promising Anticancer Strategy.
Int J Mol Sci. 2018 Aug 1;19(8):2256. doi: 10.3390/ijms19082256.
4
Impairment of the autophagy-related lysosomal degradation pathway by an anticancer rhenium(i) complex.
Dalton Trans. 2019 Mar 26;48(13):4398-4404. doi: 10.1039/c9dt00322c.
7
Self-assembled autophagy-inducing polymeric nanoparticles for breast cancer interference in-vivo.
Adv Mater. 2015 Apr 24;27(16):2627-34. doi: 10.1002/adma.201405926. Epub 2015 Mar 18.
9
The role of endolysosomal trafficking in anticancer drug resistance.
Drug Resist Updat. 2021 Jul;57:100769. doi: 10.1016/j.drup.2021.100769. Epub 2021 Jun 2.

引用本文的文献

1
Nanomedicine Approaches for Autophagy Modulation in Cancer Therapy.
Small Sci. 2025 Apr 11;5(6):2400607. doi: 10.1002/smsc.202400607. eCollection 2025 Jun.
2
Nano-formulations in disease therapy: designs, advances, challenges, and future directions.
J Nanobiotechnology. 2025 May 30;23(1):396. doi: 10.1186/s12951-025-03442-7.
4
FAP-catalyzed in situ self-assembly of magnetic resonance imaging probe for early and precise staging of liver fibrosis.
Sci Adv. 2025 Mar 14;11(11):eadt6082. doi: 10.1126/sciadv.adt6082. Epub 2025 Mar 12.
5
6
Rational Design of Biocompatible Ir(III) Photosensitizer to Overcome Drug-Resistant Cancer via Oxidative Autophagy Inhibition.
Adv Sci (Weinh). 2025 Jan;12(2):e2407236. doi: 10.1002/advs.202407236. Epub 2024 Nov 14.
7
Autophagy in oral cancer: Promises and challenges (Review).
Int J Mol Med. 2024 Dec;54(6). doi: 10.3892/ijmm.2024.5440. Epub 2024 Oct 18.
8
Nanotherapeutics targeting autophagy regulation for improved cancer therapy.
Acta Pharm Sin B. 2024 Jun;14(6):2447-2474. doi: 10.1016/j.apsb.2024.03.019. Epub 2024 Mar 18.
9
Nanoplatform-Mediated Autophagy Regulation and Combined Anti-Tumor Therapy for Resistant Tumors.
Int J Nanomedicine. 2024 Jan 26;19:917-944. doi: 10.2147/IJN.S445578. eCollection 2024.
10
Transformable nanoparticles to bypass biological barriers in cancer treatment.
Nanoscale Adv. 2022 Sep 14;4(21):4470-4480. doi: 10.1039/d2na00485b. eCollection 2022 Oct 25.

本文引用的文献

1
Single Small Molecule-Assembled Mitochondria Targeting Nanofibers for Enhanced Photodynamic Cancer Therapy in Vivo.
Adv Funct Mater. 2021 Mar 3;31(10). doi: 10.1002/adfm.202008460. Epub 2020 Dec 16.
2
A mitochondria-targeting lipid-small molecule hybrid nanoparticle for imaging and therapy in an orthotopic glioma model.
Acta Pharm Sin B. 2022 Jun;12(6):2672-2682. doi: 10.1016/j.apsb.2022.04.005. Epub 2022 Apr 14.
3
Discovery of Environment-Sensitive Fluorescent Ligands of β-Adrenergic Receptors for Cell Imaging and NanoBRET Assay.
Anal Chem. 2022 May 17;94(19):7021-7028. doi: 10.1021/acs.analchem.1c05646. Epub 2022 May 3.
5
Smart transformable nanomedicines for cancer therapy.
Biomaterials. 2021 Apr;271:120737. doi: 10.1016/j.biomaterials.2021.120737. Epub 2021 Mar 2.
6
Autophagy Regulation and Photodynamic Therapy: Insights to Improve Outcomes of Cancer Treatment.
Front Oncol. 2021 Jan 20;10:610472. doi: 10.3389/fonc.2020.610472. eCollection 2020.
10
Clinical development and potential of photothermal and photodynamic therapies for cancer.
Nat Rev Clin Oncol. 2020 Nov;17(11):657-674. doi: 10.1038/s41571-020-0410-2. Epub 2020 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验