Deng Qigang, Zeng Fugeng, Wang Dongxiu
School of Data Science and Information Engineering, Guizhou Minzu University, Guiyang 550025, China.
Math Biosci Eng. 2022 Jun 13;19(8):8580-8600. doi: 10.3934/mbe.2022398.
According to the difference of the initial energy, we consider three cases about the global existence and blow-up of the solutions for a class of coupled parabolic systems with logarithmic nonlinearity. The three cases are the low initial energy, critical initial energy and high initial energy, respectively. For the low initial energy and critical initial energy $ J(u_0, v_0)\leq d $, we prove the existence of global solutions with $ I(u_0, v_0)\geq 0 $ and blow up of solutions at finite time $ T < +\infty $ with $ I(u_0, v_0) < 0 $, where $ I $ is Nehari functional. On the other hand, we give sufficient conditions for global existence and blow up of solutions in the case of high initial energy $ J(u_0, v_0) > d $.
根据初始能量的差异,我们考虑一类具有对数非线性的耦合抛物型方程组解的整体存在性和爆破的三种情况。这三种情况分别是低初始能量、临界初始能量和高初始能量。对于低初始能量和临界初始能量(J(u_0, v_0)\leq d),我们证明了(I(u_0, v_0)\geq 0)时整体解的存在性以及(I(u_0, v_0) < 0)时解在有限时间(T < +\infty)爆破,其中(I)是内哈里泛函。另一方面,我们给出了高初始能量(J(u_0, v_0) > d)情况下解的整体存在性和爆破的充分条件。