Suppr超能文献

一类具有对数非线性的耦合抛物型方程组解的整体存在性与爆破

Global existence and blow up of solutions for a class of coupled parabolic systems with logarithmic nonlinearity.

作者信息

Deng Qigang, Zeng Fugeng, Wang Dongxiu

机构信息

School of Data Science and Information Engineering, Guizhou Minzu University, Guiyang 550025, China.

出版信息

Math Biosci Eng. 2022 Jun 13;19(8):8580-8600. doi: 10.3934/mbe.2022398.

Abstract

According to the difference of the initial energy, we consider three cases about the global existence and blow-up of the solutions for a class of coupled parabolic systems with logarithmic nonlinearity. The three cases are the low initial energy, critical initial energy and high initial energy, respectively. For the low initial energy and critical initial energy $ J(u_0, v_0)\leq d $, we prove the existence of global solutions with $ I(u_0, v_0)\geq 0 $ and blow up of solutions at finite time $ T < +\infty $ with $ I(u_0, v_0) < 0 $, where $ I $ is Nehari functional. On the other hand, we give sufficient conditions for global existence and blow up of solutions in the case of high initial energy $ J(u_0, v_0) > d $.

摘要

根据初始能量的差异,我们考虑一类具有对数非线性的耦合抛物型方程组解的整体存在性和爆破的三种情况。这三种情况分别是低初始能量、临界初始能量和高初始能量。对于低初始能量和临界初始能量(J(u_0, v_0)\leq d),我们证明了(I(u_0, v_0)\geq 0)时整体解的存在性以及(I(u_0, v_0) < 0)时解在有限时间(T < +\infty)爆破,其中(I)是内哈里泛函。另一方面,我们给出了高初始能量(J(u_0, v_0) > d)情况下解的整体存在性和爆破的充分条件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验