Academy for Advanced Interdisciplinary Studies, Peking University, No.5 Yiheyuan Rd., Beijing, 100871, China.
Academy for Advanced Interdisciplinary Studies, Peking University, No.5 Yiheyuan Rd., Beijing, 100871, China.
Comput Methods Programs Biomed. 2022 Sep;224:107001. doi: 10.1016/j.cmpb.2022.107001. Epub 2022 Jul 3.
The vessel segmentation in CT angiography (CTA) provides an important basis for automatic diagnosis and hemodynamics analysis. Virtual unenhanced (VU) CT images obtained by dual-energy CT can assist clinical diagnosis and reduce radiation dose by obviating true unenhanced imaging (UECT). However, accurate segmentation of all vessels in the head-neck CTA (HNCTA) remains a challenge, and VU images are currently not available from conventional single-energy CT imaging.
In this paper, we proposed a self-supervised dual-task deep learning strategy to fully automatically segment all vessels and predict unenhanced CT images from single-energy HNCTA based on a developed iterative residual-sharing scheme. The underlying idea was to use the correlation between the two tasks to improve task performance while avoiding manual annotation for model training.
The feasibility of the strategy was verified using the data of 24 patients. For vessel segmentation task, the proposed model achieves a significantly higher average Dice coefficient (84.83%, P-values 10 in paired t-test) than the state-of-the-art segmentation model, vanilla VNet (78.94%), and several popular 3D vessel segmentation models, including Hessian-matrix based filter (62.59%), optically-oriented flux (66.33%), spherical flux model (66.91%), and deep vessel net (66.47%). For the unenhanced prediction task, the average ROI-based error compared to the UECT in the artery tissue is 6.1±4.5 HU, similar to previously reported 6.4±5.1 HU for VU reconstruction.
Results show that the proposed dual-task framework can effectively improve the accuracy of vessel segmentation in HNCTA, and it is feasible to predict the unenhanced image from single-energy CTA, providing a potential new approach for radiation dose saving. Moreover, to our best knowledge, this is the first reported annotation-free deep learning-based full-image vessel segmentation for HNCTA.
CT 血管造影(CTA)中的血管分割为自动诊断和血流动力学分析提供了重要依据。双能 CT 获得的虚拟非增强(VU)CT 图像可以通过避免真正的非增强成像(UECT)来辅助临床诊断和降低辐射剂量。然而,头颈部 CTA(HNCTA)的所有血管的准确分割仍然是一个挑战,并且目前还无法从常规的单能 CT 成像获得 VU 图像。
在本文中,我们提出了一种自监督双任务深度学习策略,基于开发的迭代残差共享方案,从单能 HNCTA 中全自动分割所有血管并预测非增强 CT 图像。其基本思想是利用两个任务之间的相关性来提高任务性能,同时避免模型训练的手动注释。
使用 24 名患者的数据验证了该策略的可行性。在血管分割任务中,所提出的模型比最先进的分割模型,vanilla VNet(78.94%),以及几个流行的 3D 血管分割模型,包括基于 Hessian 矩阵的滤波器(62.59%)、光取向通量(66.33%)、球通量模型(66.91%)和深血管网络(66.47%),实现了显著更高的平均 Dice 系数(84.83%,配对 t 检验 P 值<0.001)。对于非增强预测任务,与动脉组织中的 UECT 相比,基于 ROI 的平均误差为 6.1±4.5 HU,与之前报道的 6.4±5.1 HU 相似。
结果表明,所提出的双任务框架可以有效地提高 HNCTA 中血管分割的准确性,并且从单能 CTA 中预测非增强图像是可行的,为节省辐射剂量提供了一种潜在的新方法。此外,据我们所知,这是第一个报道的无注释基于深度学习的 HNCTA 全图像血管分割。