Paul Sondipon, Waldron Brian, Jazaei Farhad, Larsen Daniel, Schoefernacker Scott
Department of Civil Engineering, University of Memphis, Memphis, TN 38152, USA.
Center for Applied Earth Sciences and Engineering Research (CAESER), University of Memphis, Memphis, TN 38152, USA.
MethodsX. 2022 Jun 19;9:101765. doi: 10.1016/j.mex.2022.101765. eCollection 2022.
The interaction between surficial shallow aquifers of poorer quality and semi-confined water-supply aquifers poses a potential risk for degradation of the water supply. Groundwater engineers and hydrogeologists use groundwater models to synthesize field data, conceptualize hydrological processes, and improve understanding of the groundwater system to support informed decision-making. Models for decision-making, called management models, aid in the efficient planning and sustainable management of groundwater systems. Management models search for the best or least-cost management strategy satisfying hydrologic and environmental regulations. In management models, a simulation model is linked or coupled with an optimization formulation. Widely used optimization formulations are linear, non-linear, quadratic, dynamic, and global search models. Management models are applied but are not limited to maximizing withdrawals, minimizing drawdown, pumping costs, and saltwater intrusion, and determining the best locations for production wells. This paper theoretically presents the development of groundwater wellfield management strategies and the corresponding modeling framework for each strategy's evaluation. Depending on the strategy, the modeling effort applies deterministic (simulation) and stochastic (simulation-optimization) techniques. The goals of the optimization strategies are to protect wells from potential contaminant sources, identify optimal future well installation sites, mitigate risks, and extend the life of wells that may face water contamination issues.•Several management strategies are formulated addressing well depth, seasonal pumping operation, and mapping no-drilling or red zones for new well installation.•Modeling methodologies are laid down that apply thousands of numerical simulations for each strategy to simulate and evaluate recurring patterns of contaminant movement.•The simulation model integrates MODFLOW and MODPATH to simulate 3D groundwater flow and advective contaminant movement, respectively and is transferred via FloPy to couple with the optimization/decision model using a custom Python script.
质量较差的浅层潜水含水层与半承压供水含水层之间的相互作用对供水质量下降构成了潜在风险。地下水工程师和水文地质学家使用地下水模型来综合现场数据、概念化水文过程,并增进对地下水系统的理解,以支持明智的决策制定。用于决策的模型,即管理模型,有助于地下水系统的高效规划和可持续管理。管理模型寻求满足水文和环境法规的最佳或成本最低的管理策略。在管理模型中,模拟模型与优化公式相链接或耦合。广泛使用的优化公式包括线性、非线性、二次、动态和全局搜索模型。管理模型的应用不限于最大化抽水量、最小化水位下降、抽水成本和海水入侵,以及确定生产井的最佳位置。本文从理论上介绍了地下水井田管理策略的发展以及用于评估每种策略的相应建模框架。根据策略的不同,建模工作采用确定性(模拟)和随机性(模拟优化)技术。优化策略的目标是保护水井免受潜在污染源的影响,确定未来最佳的新井安装地点,降低风险,并延长可能面临水污染问题的水井的使用寿命。•制定了几种管理策略,涉及井深、季节性抽水作业,以及绘制新井安装的禁钻或红色区域。•制定了建模方法,针对每种策略应用数千次数值模拟,以模拟和评估污染物运动的重复模式。•模拟模型集成了MODFLOW和MODPATH,分别用于模拟三维地下水流和对流污染物运动,并通过FloPy传输,使用自定义Python脚本与优化/决策模型耦合。