Suppr超能文献

极化小胶质细胞的昼夜节律时钟及其与小鼠脑振荡器的相互作用。

The Circadian Clock of Polarized Microglia and Its Interaction with Mouse Brain Oscillators.

作者信息

Honzlová Petra, Semenovykh Kateryna, Sumová Alena

机构信息

Laboratory of Biological Rhythms, Institute of Physiology, The Czech Academy of Sciences, Videnska 1083, Prague, Czech Republic.

Faculty of Science, Charles University, Prague, Czech Republic.

出版信息

Cell Mol Neurobiol. 2023 Apr;43(3):1319-1333. doi: 10.1007/s10571-022-01252-1. Epub 2022 Jul 11.

Abstract

The activity of the immune system is controlled by circadian clocks present in different immune cells. The brain-resident subtype of immune cells, microglia, exhibits a wide range of functional phenotypes depending on the signaling molecules in their microenvironment. The exact role of microglia in the hypothalamic suprachiasmatic nuclei (SCN), the central circadian clock, has not been known. Therefore, the aim of this study was to determine (1) whether microenvironment-induced changes in microglial polarization affect circadian clocks in these cells and (2) whether the presence of microglia contributes to SCN clock function. Microglial and SCN clocks were monitored using PER2-driven bioluminescence rhythms at the tissue and single-cell levels. We found that polarization of resting microglia to a pro-inflammatory (M1) or anti-inflammatory (M2) state significantly altered the period and amplitude of their molecular circadian clock; importantly, the parameters changed plastically with the repolarization of microglia. This effect was reflected in specific modulations of the expression profiles of individual clock genes in the polarized microglia. Depletion of microglia significantly reduced the amplitude of the SCN clock, and co-cultivation of the SCN explants with M2-polarized microglia specifically improved the amplitude of the SCN clock. These results demonstrate that the presence of M2-polarized microglia has beneficial effects on SCN clock function. Our results provide new insight into the mutual interaction between immune and circadian systems in the brain.

摘要

免疫系统的活动由存在于不同免疫细胞中的昼夜节律时钟控制。免疫细胞的脑驻留亚型——小胶质细胞,根据其微环境中的信号分子表现出广泛的功能表型。小胶质细胞在下丘脑视交叉上核(SCN)(即中央昼夜节律时钟)中的确切作用尚不清楚。因此,本研究的目的是确定:(1)小胶质细胞极化的微环境诱导变化是否会影响这些细胞中的昼夜节律时钟;(2)小胶质细胞的存在是否有助于SCN时钟功能。在组织和单细胞水平上,使用PER2驱动的生物发光节律监测小胶质细胞和SCN时钟。我们发现,静息小胶质细胞向促炎(M1)或抗炎(M2)状态的极化显著改变了其分子昼夜节律时钟的周期和振幅;重要的是,这些参数随着小胶质细胞的重新极化而发生可塑性变化。这种效应反映在极化小胶质细胞中各个时钟基因表达谱的特定调节上。小胶质细胞的缺失显著降低了SCN时钟的振幅,而SCN外植体与M2极化小胶质细胞的共培养特异性地提高了SCN时钟的振幅。这些结果表明,M2极化小胶质细胞的存在对SCN时钟功能具有有益作用。我们的结果为大脑中免疫和昼夜节律系统之间的相互作用提供了新的见解。

相似文献

1
The Circadian Clock of Polarized Microglia and Its Interaction with Mouse Brain Oscillators.
Cell Mol Neurobiol. 2023 Apr;43(3):1319-1333. doi: 10.1007/s10571-022-01252-1. Epub 2022 Jul 11.
2
Divergent roles of clock genes in retinal and suprachiasmatic nucleus circadian oscillators.
PLoS One. 2012;7(6):e38985. doi: 10.1371/journal.pone.0038985. Epub 2012 Jun 11.
3
NF-κB signalling is involved in immune-modulation, but not basal functioning, of the mouse suprachiasmatic circadian clock.
Eur J Neurosci. 2017 Apr;45(8):1111-1123. doi: 10.1111/ejn.13553. Epub 2017 Mar 23.
4
Cellular circadian oscillators in the suprachiasmatic nucleus remain coupled in the absence of connexin-36.
Neuroscience. 2017 Aug 15;357:1-11. doi: 10.1016/j.neuroscience.2017.05.037. Epub 2017 May 31.
7
Delayed Cryptochrome Degradation Asymmetrically Alters the Daily Rhythm in Suprachiasmatic Clock Neuron Excitability.
J Neurosci. 2017 Aug 16;37(33):7824-7836. doi: 10.1523/JNEUROSCI.0691-17.2017. Epub 2017 Jul 11.
8
Development of the mammalian circadian clock.
Eur J Neurosci. 2020 Jan;51(1):182-193. doi: 10.1111/ejn.14318. Epub 2019 Jan 30.
10
Misalignment of Circadian Rhythms in Diet-Induced Obesity.
Adv Exp Med Biol. 2024;1460:27-71. doi: 10.1007/978-3-031-63657-8_2.

引用本文的文献

1
Glia: the cellular glue that binds circadian rhythms and sleep.
Sleep. 2025 Mar 11;48(3). doi: 10.1093/sleep/zsae314.
2
Circadian rhythm disruption: a potential trigger in Parkinson's disease pathogenesis.
Front Cell Neurosci. 2024 Oct 30;18:1464595. doi: 10.3389/fncel.2024.1464595. eCollection 2024.
3
Hepatocellular Carcinoma in Mice Affects Neuronal Activity and Glia Cells in the Suprachiasmatic Nucleus.
Biomedicines. 2024 Sep 27;12(10):2202. doi: 10.3390/biomedicines12102202.
4
Circadian Regulation of the Neuroimmune Environment Across the Lifespan: From Brain Development to Aging.
J Biol Rhythms. 2023 Oct;38(5):419-446. doi: 10.1177/07487304231178950. Epub 2023 Jun 26.

本文引用的文献

1
Cortical diurnal rhythms remain intact with microglial depletion.
Sci Rep. 2022 Jan 7;12(1):114. doi: 10.1038/s41598-021-04079-w.
3
Circadian rhythm-associated Rev-erbα modulates polarization of decidual macrophage via the PI3K/Akt signaling pathway.
Am J Reprod Immunol. 2021 Sep;86(3):e13436. doi: 10.1111/aji.13436. Epub 2021 May 18.
4
Newcastle Disease Virus Inhibits the Proliferation of T Cells Induced by Dendritic Cells and .
Front Immunol. 2021 Feb 23;11:619829. doi: 10.3389/fimmu.2020.619829. eCollection 2020.
5
Deficiency of the Circadian Clock Gene Reduces Microglial Immunometabolism.
Front Immunol. 2020 Dec 8;11:586399. doi: 10.3389/fimmu.2020.586399. eCollection 2020.
6
Microglial ablation in rats disrupts the circadian system.
FASEB J. 2021 Feb;35(2):e21195. doi: 10.1096/fj.202001555RR. Epub 2020 Nov 16.
7
Innate Rhythms: Clocks at the Center of Monocyte and Macrophage Function.
Front Immunol. 2020 Aug 4;11:1743. doi: 10.3389/fimmu.2020.01743. eCollection 2020.
8
Crosstalk Between Astrocytes and Microglia: An Overview.
Front Immunol. 2020 Jul 16;11:1416. doi: 10.3389/fimmu.2020.01416. eCollection 2020.
9
A Pro- and Anti-inflammatory Axis Modulates the Macrophage Circadian Clock.
Front Immunol. 2020 May 14;11:867. doi: 10.3389/fimmu.2020.00867. eCollection 2020.
10
Noise-driven cellular heterogeneity in circadian periodicity.
Proc Natl Acad Sci U S A. 2020 May 12;117(19):10350-10356. doi: 10.1073/pnas.1922388117. Epub 2020 May 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验