Human Technopole, Milano, Italy.
Open Targets, Cambridge, UK.
Mol Syst Biol. 2022 Jul;18(7):e11017. doi: 10.15252/msb.202211017.
Immortal cancer cell lines (CCLs) are the most widely used system for investigating cancer biology and for the preclinical development of oncology therapies. Pharmacogenomic and genome-wide editing screenings have facilitated the discovery of clinically relevant gene-drug interactions and novel therapeutic targets via large panels of extensively characterised CCLs. However, tailoring pharmacological strategies in a precision medicine context requires bridging the existing gaps between tumours and in vitro models. Indeed, intrinsic limitations of CCLs such as misidentification, the absence of tumour microenvironment and genetic drift have highlighted the need to identify the most faithful CCLs for each primary tumour while addressing their heterogeneity, with the development of new models where necessary. Here, we discuss the most significant limitations of CCLs in representing patient features, and we review computational methods aiming at systematically evaluating the suitability of CCLs as tumour proxies and identifying the best patient representative in vitro models. Additionally, we provide an overview of the applications of these methods to more complex models and discuss future machine-learning-based directions that could resolve some of the arising discrepancies.
永生癌细胞系(CCLs)是研究癌症生物学和肿瘤治疗临床前开发最广泛使用的系统。通过广泛表征的 CCLs 大面板进行药物基因组学和全基因组编辑筛选,促进了临床相关基因-药物相互作用和新治疗靶点的发现。然而,在精准医学背景下定制药物策略需要弥合肿瘤和体外模型之间的现有差距。事实上,CCLs 本身存在的局限性,如错误鉴定、缺乏肿瘤微环境和遗传漂移,突出了需要确定最适合每种原发性肿瘤的 CCLs,同时解决其异质性,在必要时开发新的模型。在这里,我们讨论了 CCLs 在代表患者特征方面的最显著局限性,并回顾了旨在系统评估 CCLs 作为肿瘤替代物的适用性以及确定体外模型中最佳患者代表的计算方法。此外,我们还概述了这些方法在更复杂模型中的应用,并讨论了未来基于机器学习的方向,这些方向可能会解决一些出现的差异。