Institut für Mikrotechnik, Technische Universität Braunschweig, Alte Salzdahlumer Str. 203, 38124 Braunschweig, Germany.
Zentrum für Pharmaverfahrenstechnik (PVZ), Technische Universität Braunschweig, Franz-Liszt-Str. 35a, 38106 Braunschweig, Germany.
Lab Chip. 2022 Aug 9;22(16):3025-3044. doi: 10.1039/d2lc00240j.
Microfluidic mixers promise unique conditions for the controlled and continuous preparation of nanoparticles by antisolvent precipitation. Nanoparticles may enable encapsulation of drug or mRNA molecules in the form of carrier nanoparticles or can provide higher bioavailability in the form of drug nanoparticles. The ultimate goal in microfluidic approaches is the production of nanoparticles with narrow size distributions while avoiding contaminations and achieving sufficiently high throughput. To achieve this, a novel microfluidic precipitation device was developed and realized by two-photon polymerization: mixing elements were designed in such a way that the liquids undergo a repeated Smale horseshoe transformation resulting in an increased interfacial area and mixing times of less than 10 ms. These elements and an additional 3D flow focusing ensure that no organic phase is exposed to the channel walls. The integration of a fluidic shield layer in the flow focusing proved to be useful to delay the precipitation process until reaching a sufficient distance to the injection nozzle. Lipid nanoparticle preparation with different concentrations of castor oil or the hard fat Softisan® 100 were performed at different flow rates and mixing ratios with and without a shield layer. Flow rates of up to 800 μl min and organic phase mixing ratios of up to 20% resulted in particle sizes ranging from 42 nm to 166 nm with polydispersity indices from 0.04 to 0.11, indicating very narrowly distributed, and in most cases even monodisperse, nanoparticles. The occurrence of fouling can be completely suppressed with this new type of mixing elements, as long as Dean vortices are prevented. Moreover, this parameter range in the horseshoe lamination mixer provided a stable and continuous process, which enables a scalable production.
微流控混合器通过抗溶剂沉淀为纳米颗粒的可控连续制备提供了独特的条件。纳米颗粒可以将药物或 mRNA 分子封装在载体纳米颗粒的形式中,或者可以以药物纳米颗粒的形式提供更高的生物利用度。微流控方法的最终目标是生产具有较窄粒径分布的纳米颗粒,同时避免污染并实现足够高的吞吐量。为了实现这一目标,开发了一种新型的微流控沉淀装置,并通过双光子聚合来实现:混合元件的设计方式使得液体经历反复的 Smale 马蹄铁变换,从而增加了界面面积和混合时间小于 10ms。这些元件和另外的 3D 流聚焦确保没有有机相暴露在通道壁上。在流聚焦中集成流体屏蔽层被证明是有用的,可以延迟沉淀过程,直到达到与注射喷嘴足够的距离。在不同的流速和混合比下,用和不用屏蔽层,用不同浓度的蓖麻油或硬脂酸 Softisan®100 制备脂质纳米颗粒。流速高达 800μl min,有机相混合比高达 20%,得到粒径范围从 42nm 到 166nm,多分散指数从 0.04 到 0.11,表明粒径分布非常窄,在大多数情况下甚至是单分散的纳米颗粒。只要防止迪恩涡旋的出现,就可以完全抑制这种新型混合元件的结垢发生。此外,在马蹄铁层压混合器的这个参数范围内,提供了一种稳定连续的过程,使规模化生产成为可能。