Department of Bioengineering, School of Engineering, University of California, Los Angeles, California, USA.
Department of Medicine, Greater Los Angeles VA Healthcare System, Los Angeles, California, USA.
Theranostics. 2022 Jun 6;12(10):4779-4790. doi: 10.7150/thno.72339. eCollection 2022.
New variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are continuing to spread globally, contributing to the persistence of the COVID-19 pandemic. Increasing resources have been focused on developing vaccines and therapeutics that target the Spike glycoprotein of SARS-CoV-2. Recent advances in microfluidics have the potential to recapitulate viral infection in the organ-specific platforms, known as organ-on-a-chip (OoC), in which binding of SARS-CoV-2 Spike protein to the angiotensin-converting enzyme 2 (ACE2) of the host cells occurs. As the COVID-19 pandemic lingers, there remains an unmet need to screen emerging mutations, to predict viral transmissibility and pathogenicity, and to assess the strength of neutralizing antibodies following vaccination or reinfection. Conventional detection of SARS-CoV-2 variants relies on two-dimensional (2-D) cell culture methods, whereas simulating the micro-environment requires three-dimensional (3-D) systems. To this end, analyzing SARS-CoV-2-mediated pathogenicity via microfluidic platforms minimizes the experimental cost, duration, and optimization needed for animal studies, and obviates the ethical concerns associated with the use of primates. In this context, this review highlights the state-of-the-art strategy to engineer the nano-liposomes that can be conjugated with SARS-CoV-2 Spike mutations or genomic sequences in the microfluidic platforms; thereby, allowing for screening the rising SARS-CoV-2 variants and predicting COVID-19-associated coagulation. Furthermore, introducing viral genomics to the patient-specific blood accelerates the discovery of therapeutic targets in the face of evolving viral variants, including B1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta), c.37 (Lambda), and B.1.1.529 (Omicron). Thus, engineering nano-liposomes to encapsulate SARS-CoV-2 viral genomic sequences enables rapid detection of SARS-CoV-2 variants in the long COVID-19 era.
新型严重急性呼吸系统综合症冠状病毒 2(SARS-CoV-2)变种持续在全球传播,导致 COVID-19 大流行持续。目前投入了大量资源来开发针对 SARS-CoV-2 刺突糖蛋白的疫苗和疗法。微流控技术的最新进展有可能在器官特异性平台(称为器官芯片,OoC)中再现病毒感染,在此过程中,SARS-CoV-2 刺突蛋白与宿主细胞的血管紧张素转化酶 2(ACE2)结合。随着 COVID-19 大流行的持续,仍然需要通过筛选新出现的突变、预测病毒传播力和致病性以及评估疫苗接种或再次感染后的中和抗体效力,来满足需求。目前对 SARS-CoV-2 变体的常规检测依赖于二维(2-D)细胞培养方法,而模拟微环境则需要三维(3-D)系统。为此,通过微流控平台分析 SARS-CoV-2 介导的致病性可以最大限度地减少动物研究所需的实验成本、时间和优化,并且避免了与使用灵长类动物相关的伦理问题。在这种情况下,本文综述了在微流控平台中设计能够与 SARS-CoV-2 刺突突变或基因组序列结合的纳米脂质体的最新策略;从而能够筛选新出现的 SARS-CoV-2 变体,并预测与 COVID-19 相关的凝血。此外,将病毒基因组引入到患者特定的血液中,可以在面对不断演变的病毒变体(包括 B1.1.7(Alpha)、B.1.351(Beta)、B.1.617.2(Delta)、c.37(Lambda)和 B.1.1.529(Omicron))时,加速发现治疗靶点。因此,设计纳米脂质体来封装 SARS-CoV-2 病毒基因组序列,可以在长 COVID-19 时代快速检测 SARS-CoV-2 变体。