Suppr超能文献

使用机器学习技术检测预防产后尿失禁的最具影响力变量。

Detection of the most influential variables for preventing postpartum urinary incontinence using machine learning techniques.

作者信息

Benítez-Andrades José Alberto, García-Ordás María Teresa, Álvarez-González María, Leirós-Rodríguez Raquel, López Rodríguez Ana F

机构信息

SALBIS Research Group, Department of Electric, Systems and Automatics Engineering, Universidad de León, León, Spain.

SECOMUCI Research Group, Escuela de Ingenierías Industrial e Informática, Universidad de León, León, Spain.

出版信息

Digit Health. 2022 Jul 5;8:20552076221111289. doi: 10.1177/20552076221111289. eCollection 2022 Jan-Dec.

Abstract

BACKGROUND

Postpartum urinary incontinence is a fairly widespread health problem in today's society among women who have given birth. Recent studies analysing the different variables that may be related to Postpartum urinary incontinence have brought to light some variables that may be related to Postpartum urinary incontinence in order to try to prevent it. However, no studies have been found that analyse some of the intrinsic and extrinsic variables of patients during pregnancy that could give rise to this pathology.

OBJECTIVE

The objective of this study is to assess the most influential variables in Postpartum urinary incontinence by means of machine learning techniques, starting from a group of intrinsic variables, another group of extrinsic variables and a mixed group that combines both types.

METHODS

Information was collected on 93 patients, pregnant women who gave birth. Experiments were conducted using different machine learning classification techniques combined with oversampling techniques to predict four variables: urinary incontinence, urinary incontinence frequency, urinary incontinence intensity and stress urinary incontinence.

RESULTS

The results showed that the most accurate predictive models were those trained with extrinsic variables, obtaining accuracy values of 70% for urinary incontinence, 77% for urinary incontinence frequency, 71% for urinary incontinence intensity and 93% for stress urinary incontinence.

CONCLUSIONS

This research has shown that extrinsic variables are more important than intrinsic variables in predicting problems related to postpartum urinary incontinence. Therefore, although not conclusive, it opens a line of research that could confirm that the prevention of Postpartum urinary incontinence could be achieved by following healthy habits in pregnant women.

摘要

背景

产后尿失禁在当今社会是分娩后的女性中相当普遍的健康问题。最近分析可能与产后尿失禁相关的不同变量的研究揭示了一些可能与产后尿失禁相关的变量,以便试图预防它。然而,尚未发现有研究分析孕期患者的一些内在和外在变量,这些变量可能导致这种病症。

目的

本研究的目的是通过机器学习技术,从一组内在变量、另一组外在变量以及将这两种类型结合的混合组开始,评估产后尿失禁中最具影响力的变量。

方法

收集了93名分娩孕妇的信息。使用不同的机器学习分类技术结合过采样技术进行实验,以预测四个变量:尿失禁、尿失禁频率、尿失禁强度和压力性尿失禁。

结果

结果表明,最准确的预测模型是用外在变量训练的模型,尿失禁的准确率为70%,尿失禁频率为77%,尿失禁强度为71%,压力性尿失禁为93%。

结论

本研究表明,在预测与产后尿失禁相关的问题时,外在变量比内在变量更重要。因此,虽然尚无定论,但它开辟了一条研究途径,可能证实通过让孕妇养成健康习惯可以预防产后尿失禁。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6a5/9272055/487a97ba066a/10.1177_20552076221111289-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验