Suppr超能文献

用于中风后偏瘫的机器人手部矫形器中的拇指稳定与辅助

Thumb Stabilization and Assistance in a Robotic Hand Orthosis for Post-Stroke Hemiparesis.

作者信息

Chen Ava, Winterbottom Lauren, Park Sangwoo, Xu Jingxi, Nilsen Dawn M, Stein Joel, Ciocarlie Matei

机构信息

Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA.

Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, NY 10032, USA.

出版信息

IEEE Robot Autom Lett. 2022 Jul;7(3):8276-8282. doi: 10.1109/lra.2022.3185365. Epub 2022 Jun 22.

Abstract

We propose a dual-cable method of stabilizing the thumb in the context of a hand orthosis designed for individuals with upper extremity hemiparesis after stroke. This cable network adds opposition/reposition capabilities to the thumb, and increases the likelihood of forming a hand pose that can successfully manipulate objects. In addition to a (where both cables are of fixed length), our approach also allows for a single-actuator (where the extension cable is actuated while the abductor remains passive), which allows a range of motion intended to facilitate creating and maintaining grasps. We performed experiments with five chronic stroke survivors consisting of unimanual resistive-pull tasks and bimanual twisting tasks with simulated real-world objects; these explored the effects of thumb assistance on grasp stability and functional range of motion. Our results show that both active- and passive-thumb versions achieved similar performance in terms of improving grasp force generation over a no-device baseline, but active thumb stabilization enabled users to maintain grasps for longer durations.

摘要

我们提出了一种在为中风后上肢偏瘫患者设计的手部矫形器中稳定拇指的双缆线方法。该缆线网络为拇指增加了对掌/对指能力,并增加了形成能够成功操纵物体的手部姿势的可能性。除了一种双固定长度缆线的情况(两根缆线长度均固定),我们的方法还允许单驱动的情况(外展肌保持被动,伸展缆线被驱动),这允许一系列旨在便于形成和保持抓握的运动范围。我们对五名慢性中风幸存者进行了实验,包括使用模拟真实物体的单手抗阻拉伸任务和双手扭转任务;这些实验探究了拇指辅助对抓握稳定性和功能运动范围的影响。我们的结果表明,在比无设备基线提高抓握力产生方面,主动拇指和被动拇指版本都取得了相似的表现,但主动拇指稳定使使用者能够保持抓握的时间更长。

相似文献

1
Thumb Stabilization and Assistance in a Robotic Hand Orthosis for Post-Stroke Hemiparesis.
IEEE Robot Autom Lett. 2022 Jul;7(3):8276-8282. doi: 10.1109/lra.2022.3185365. Epub 2022 Jun 22.
2
Bioinspired High-Degrees of Freedom Soft Robotic Glove for Restoring Versatile and Comfortable Manipulation.
Soft Robot. 2022 Aug;9(4):734-744. doi: 10.1089/soro.2020.0167. Epub 2021 Aug 12.
3
A pediatric robotic thumb exoskeleton for at-home rehabilitation: the Isolated Orthosis for Thumb Actuation (IOTA).
IEEE Int Conf Rehabil Robot. 2013 Jun;2013:6650500. doi: 10.1109/ICORR.2013.6650500.
4
An overview of robotic/mechanical devices for post-stroke thumb rehabilitation.
Disabil Rehabil Assist Technol. 2018 Oct;13(7):683-703. doi: 10.1080/17483107.2018.1425746. Epub 2018 Jan 15.
5
User-Driven Functional Movement Training With a Wearable Hand Robot After Stroke.
IEEE Trans Neural Syst Rehabil Eng. 2020 Oct;28(10):2265-2275. doi: 10.1109/TNSRE.2020.3021691. Epub 2020 Sep 4.
6
Clinician perceptions of a novel wearable robotic hand orthosis for post-stroke hemiparesis.
Disabil Rehabil. 2025 Mar;47(6):1577-1586. doi: 10.1080/09638288.2024.2375056. Epub 2024 Jul 8.
7
Development of a Tendon-Driven Wearable Assist System for Thumb Motion of Hand Paralysis.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:4941-4946. doi: 10.1109/EMBC44109.2020.9176179.
9
Hand Extension Robot Orthosis (HERO) Glove: Development and Testing With Stroke Survivors With Severe Hand Impairment.
IEEE Trans Neural Syst Rehabil Eng. 2019 May;27(5):916-926. doi: 10.1109/TNSRE.2019.2910011. Epub 2019 Apr 11.
10
Examination of the torque required to passively palmar abduct the thumb CMC joint in a pediatric population with hemiplegia and stroke.
J Biomech. 2015 Dec 16;48(16):4246-52. doi: 10.1016/j.jbiomech.2015.10.027. Epub 2015 Oct 28.

引用本文的文献

1
Meta-Learning for Fast Adaptation in Intent Inferral on a Robotic Hand Orthosis for Stroke.
Rep U S. 2024 Oct;2024:4693-4700. doi: 10.1109/iros58592.2024.10801596. Epub 2024 Dec 25.
2
ChatEMG: Synthetic Data Generation to Control a Robotic Hand Orthosis for Stroke.
IEEE Robot Autom Lett. 2025 Feb;10(2):907-914. doi: 10.1109/lra.2024.3511372. Epub 2024 Dec 4.
3
Volitional Control of the Paretic Hand Post-Stroke Increases Finger Stiffness and Resistance to Robot-Assisted Movement.
Proc IEEE RAS EMBS Int Conf Biomed Robot Biomechatron. 2024 Sep;2024:1670-1675. doi: 10.1109/biorob60516.2024.10719809. Epub 2024 Oct 23.
4
Research trends and hotspots of post-stroke upper limb dysfunction: a bibliometric and visualization analysis.
Front Neurol. 2024 Oct 2;15:1449729. doi: 10.3389/fneur.2024.1449729. eCollection 2024.
5
Clinician perceptions of a novel wearable robotic hand orthosis for post-stroke hemiparesis.
Disabil Rehabil. 2025 Mar;47(6):1577-1586. doi: 10.1080/09638288.2024.2375056. Epub 2024 Jul 8.

本文引用的文献

1
Effects of Robot-Assisted Rehabilitation on Hand Function of People With Stroke: A Randomized, Crossover-Controlled, Assessor-Blinded Study.
Am J Occup Ther. 2021 Jan-Feb;75(1):7501205020p1-7501205020p11. doi: 10.5014/ajot.2021.038232.
2
HandMATE: Wearable Robotic Hand Exoskeleton and Integrated Android App for At Home Stroke Rehabilitation.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:4867-4872. doi: 10.1109/EMBC44109.2020.9175332.
3
User-Driven Functional Movement Training With a Wearable Hand Robot After Stroke.
IEEE Trans Neural Syst Rehabil Eng. 2020 Oct;28(10):2265-2275. doi: 10.1109/TNSRE.2020.3021691. Epub 2020 Sep 4.
4
Preliminary Assessment of a Hand and Arm Exoskeleton for Enabling Bimanual Tasks for Individuals With Hemiparesis.
IEEE Trans Neural Syst Rehabil Eng. 2020 Oct;28(10):2214-2223. doi: 10.1109/TNSRE.2020.3018649. Epub 2020 Aug 21.
5
Fully Wearable Actuated Soft Exoskeleton for Grasping Assistance in Everyday Activities.
Soft Robot. 2021 Apr;8(2):128-143. doi: 10.1089/soro.2019.0135. Epub 2020 Jun 18.
6
Design, Modeling, and Evaluation of Fabric-Based Pneumatic Actuators for Soft Wearable Assistive Gloves.
Soft Robot. 2020 Oct;7(5):583-596. doi: 10.1089/soro.2019.0105. Epub 2020 Jan 29.
8
An overview of robotic/mechanical devices for post-stroke thumb rehabilitation.
Disabil Rehabil Assist Technol. 2018 Oct;13(7):683-703. doi: 10.1080/17483107.2018.1425746. Epub 2018 Jan 15.
9
Functional classification of grasp strategies used by hemiplegic patients.
PLoS One. 2017 Nov 10;12(11):e0187608. doi: 10.1371/journal.pone.0187608. eCollection 2017.
10
Home-Based Therapy After Stroke Using the Hand Spring Operated Movement Enhancer (HandSOME).
IEEE Trans Neural Syst Rehabil Eng. 2017 Dec;25(12):2305-2312. doi: 10.1109/TNSRE.2017.2695379. Epub 2017 Apr 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验