Departamento de Ciencias Químicas, Universidad Andrés Bello, Avenida República 275, Santiago de Chile, Chile.
Centro de Química Teórica y Computacional, Universidad Andrés Bello, Avenida República 275, Santiago de Chile, Chile.
Chemphyschem. 2022 Nov 4;23(21):e202200343. doi: 10.1002/cphc.202200343. Epub 2022 Aug 9.
This paper generalizes very recent and unexpected findings [J. Phys. Chem. A, 2021, 125, 5152-5165] regarding the known "direct- and inverse-electron demand" Diels-Alder mechanisms. Application of bonding evolution theory indicates that the key electron rearrangement associated with significant chemical events (e. g., the breaking/forming processes of bonds) can be characterized via the simplest fold polynomial. For the CC bond formation, neither substituent position nor the type of electronic demand induces a measurable cusp-type signature. As opposed to the case of [4+2] cycloaddition between 1,3-butadiene and ethylene, where the two new CC single bonds occur beyond the transition state (TS) in the activated cases, the first CC bond occurs in the domain of structural stability featuring the TS, whereas the second one remains located in the deactivation path connecting the TS with the cycloadduct.
本文总结了最近非常出人意料的发现[J. Phys. Chem. A, 2021, 125, 5152-5165],这些发现涉及已知的“直接和间接电子需求”Diels-Alder 机制。键合演化理论的应用表明,与重要化学事件(例如键的断裂/形成过程)相关的关键电子重排可以通过最简单的折叠多项式来描述。对于 CC 键的形成,取代基位置和电子需求类型都不会引起可测量的尖点型特征。与 1,3-丁二烯和乙烯之间的[4+2]环加成反应不同,在活性情况下,两个新的 CC 单键出现在过渡态(TS)之后,第一个 CC 键出现在具有 TS 的结构稳定区域,而第二个键仍然位于连接 TS 和环加合物的去活化路径中。