Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; Normandie Univ, UNICAEN, CHU de Caen Normandie, Unité de recherche BioTICLA INSERM U1086, 14000 Caen, France.
Department of Infection, Immunity and Inflammation, Cochin Institute, INSERM U1016, CNRS UMR8104, Paris University, Paris 75014, France.
Drug Resist Updat. 2022 Jul;63:100852. doi: 10.1016/j.drup.2022.100852. Epub 2022 Jul 6.
NSCLC is the leading cause of cancer mortality and represents a major challenge in cancer therapy. Intrinsic and acquired anticancer drug resistance are promoted by hypoxia and HIF-1α. Moreover, chemoresistance is sustained by the activation of key signaling pathways (such as RAS and its well-known downstream targets PI3K/AKT and MAPK) and several mutated oncogenes (including KRAS and EGFR among others). In this review, we highlight how these oncogenic factors are interconnected with cell metabolism (aerobic glycolysis, glutaminolysis and lipid synthesis). Also, we stress the key role of four metabolic enzymes (PFK1, dimeric-PKM2, GLS1 and ACLY), which promote the activation of these oncogenic pathways in a positive feedback loop. These four tenors orchestrating the coordination of metabolism and oncogenic pathways could be key druggable targets for specific inhibition. Since PFK1 appears as the first tenor of this orchestra, its inhibition (and/or that of its main activator PFK2/PFKFB3) could be an efficacious strategy against NSCLC. Citrate is a potent physiologic inhibitor of both PFK1 and PFKFB3, and NSCLC cells seem to maintain a low citrate level to sustain aerobic glycolysis and the PFK1/PI3K/EGFR axis. Awaiting the development of specific non-toxic inhibitors of PFK1 and PFK2/PFKFB3, we propose to test strategies increasing citrate levels in NSCLC tumors to disrupt this interconnection. This could be attempted by evaluating inhibitors of the citrate-consuming enzyme ACLY and/or by direct administration of citrate at high doses. In preclinical models, this "citrate strategy" efficiently inhibits PFK1/PFK2, HIF-1α, and IGFR/PI3K/AKT axes. It also blocks tumor growth in RAS-driven lung cancer models, reversing dedifferentiation, promoting T lymphocytes tumor infiltration, and increasing sensitivity to cytotoxic drugs.
非小细胞肺癌是癌症死亡的主要原因,也是癌症治疗的主要挑战。缺氧和 HIF-1α促进了内在和获得性抗癌药物耐药性。此外,关键信号通路(如 RAS 及其著名的下游靶点 PI3K/AKT 和 MAPK)和几个突变致癌基因(包括 KRAS 和 EGFR 等)的激活维持了化疗耐药性。在这篇综述中,我们强调了这些致癌因素如何与细胞代谢(有氧糖酵解、谷氨酰胺分解和脂质合成)相互关联。此外,我们强调了四种代谢酶(PFK1、二聚体-PKM2、GLS1 和 ACLY)的关键作用,它们在正反馈环中促进这些致癌途径的激活。这四位指挥家协调代谢和致癌途径的协调,可能是特定抑制的关键可用药靶标。由于 PFK1 似乎是这个管弦乐队的第一指挥家,其抑制(和/或其主要激活剂 PFK2/PFKFB3 的抑制)可能是对抗 NSCLC 的有效策略。柠檬酸是 PFK1 和 PFKFB3 的有效生理抑制剂,而 NSCLC 细胞似乎维持低柠檬酸水平以维持有氧糖酵解和 PFK1/PI3K/EGFR 轴。在等待开发特异性非毒性 PFK1 和 PFK2/PFKFB3 抑制剂的同时,我们建议测试增加 NSCLC 肿瘤中柠檬酸水平的策略来破坏这种相互联系。这可以通过评估柠檬酸消耗酶 ACLY 的抑制剂来尝试,或者通过直接高剂量给予柠檬酸。在临床前模型中,这种“柠檬酸策略”有效地抑制了 PFK1/PFK2、HIF-1α 和 IGF1R/PI3K/AKT 轴。它还阻止了 RAS 驱动的肺癌模型中的肿瘤生长,逆转去分化,促进 T 淋巴细胞肿瘤浸润,并增加对细胞毒性药物的敏感性。