Suppr超能文献

HARLEY 减轻了用户偏差,并促进了酵母荧光图像中焦点的高效定量和共定位分析。

HARLEY mitigates user bias and facilitates efficient quantification and co-localization analyses of foci in yeast fluorescence images.

机构信息

Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA.

出版信息

Sci Rep. 2022 Jul 18;12(1):12238. doi: 10.1038/s41598-022-16381-2.

Abstract

Quantification of cellular structures in fluorescence microscopy data is a key means of understanding cellular function. Unfortunately, numerous cellular structures present unique challenges in their ability to be unbiasedly and accurately detected and quantified. In our studies on stress granules in yeast, users displayed a striking variation of up to 3.7-fold in foci calls and were only able to replicate their results with 62-78% accuracy, when re-quantifying the same images. To facilitate consistent results we developed HARLEY (Human Augmented Recognition of LLPS Ensembles in Yeast), a customizable software for detection and quantification of stress granules in S. cerevisiae. After a brief model training on ~ 20 cells the detection and quantification of foci is fully automated and based on closed loops in intensity contours, constrained only by the a priori known size of the features of interest. Since no shape is implied, this method is not limited to round features, as is often the case with other algorithms. Candidate features are annotated with a set of geometrical and intensity-based properties to train a kernel Support Vector Machine to recognize features of interest. The trained classifier is then used to create consistent results across datasets. For less ambiguous foci datasets, a parametric selection is available. HARLEY is an intuitive tool aimed at yeast microscopy users without much technical expertise. It allows batch processing of foci detection and quantification, and the ability to run various geometry-based and pixel-based colocalization analyses to uncover trends or correlations in foci-related data. HARLEY is open source and can be downloaded from https://github.com/lnilya/harley .

摘要

在荧光显微镜数据中对细胞结构进行定量分析是理解细胞功能的关键手段。不幸的是,许多细胞结构在其被无偏和准确检测和定量的能力方面存在独特的挑战。在我们对酵母应激颗粒的研究中,用户在焦点调用中显示出高达 3.7 倍的惊人差异,并且当重新定量相同的图像时,只能以 62-78%的准确率复制他们的结果。为了实现一致的结果,我们开发了 HARLEY(酵母中液-液相分离集合的人为增强识别),这是一种用于检测和定量 S. cerevisiae 中应激颗粒的可定制软件。在大约 20 个细胞上进行短暂的模型训练后,焦点的检测和定量是完全自动化的,并且基于强度轮廓的闭环,仅受感兴趣特征的先验已知大小的限制。由于没有暗示形状,因此该方法不受其他算法通常情况下的圆形特征的限制。候选特征用一组基于几何形状和强度的属性进行注释,以训练内核支持向量机来识别感兴趣的特征。然后,使用训练好的分类器在数据集之间创建一致的结果。对于不太模糊的焦点数据集,提供了参数选择。HARLEY 是一种直观的工具,适用于没有太多技术专业知识的酵母显微镜用户。它允许批量处理焦点检测和定量,并且能够运行各种基于几何形状和基于像素的共定位分析,以揭示焦点相关数据中的趋势或相关性。HARLEY 是开源的,可以从 https://github.com/lnilya/harley 下载。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d7d/9293886/23d47ab8680a/41598_2022_16381_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验