CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
University of Chinese Academy of Sciences, Beijing, China.
J Virol. 2022 Aug 10;96(15):e0095822. doi: 10.1128/jvi.00958-22. Epub 2022 Jul 19.
The spike protein on sarbecovirus virions contains two external, protruding domains: an N-terminal domain (NTD) with unclear function and a C-terminal domain (CTD) that binds the host receptor, allowing for viral entry and infection. While the CTD is well studied for therapeutic interventions, the role of the NTD is far less well understood for many coronaviruses. Here, we demonstrate that the spike NTD from SARS-CoV-2 and other sarbecoviruses binds to unidentified glycans similarly to other members of the family. We also show that these spike NTD (S-NTD) proteins adhere to Calu3 cells, a human lung cell line, although the biological relevance of this is unclear. In contrast to what has been shown for Middle East respiratory syndrome coronavirus (MERS-CoV), which attaches sialic acids during cell entry, sialic acids present on Calu3 cells inhibited sarbecovirus infection. Therefore, while sarbecoviruses can interact with cell surface glycans similarly to other coronaviruses, their reliance on glycans for entry is different from that of other respiratory coronaviruses, suggesting sarbecoviruses and MERS-CoV have adapted to different cell types, tissues, or hosts during their divergent evolution. Our findings provide important clues for further exploring the biological functions of sarbecovirus glycan binding and adds to our growing understanding of the complex forces that shape coronavirus spike evolution. Spike N-terminal domains (S-NTD) of sarbecoviruses are highly diverse; however, their function remains largely understudied compared with the receptor-binding domains (RBD). Here, we show that sarbecovirus S-NTD can be phylogenetically clustered into five clades and exhibit various levels of glycan binding . We also show that, unlike some coronaviruses, including MERS-CoV, sialic acids present on the surface of Calu3, a human lung cell culture, inhibit SARS-CoV-2 and other sarbecoviruses. These results suggest that while glycan binding might be an ancestral trait conserved across different coronavirus families, the functional outcome during infection can vary, reflecting divergent viral evolution. Our results expand our knowledge on the biological functions of the S-NTD across diverse sarbecoviruses and provide insight on the evolutionary history of coronavirus spike.
刺突蛋白位于沙贝冠状病毒衣壳上,包含两个向外突出的结构域:N 端结构域(NTD),功能尚不明确;C 端结构域(CTD),与宿主受体结合,允许病毒进入并感染。虽然 CTD 已经得到了很好的研究,可以作为治疗干预的靶点,但对于许多冠状病毒来说,NTD 的作用知之甚少。在这里,我们证明了来自 SARS-CoV-2 和其他沙贝冠状病毒的刺突 NTD 与家族中的其他成员一样,与未鉴定的聚糖结合。我们还表明,这些刺突 NTD(S-NTD)蛋白与 Calu3 细胞(一种人肺细胞系)结合,尽管其生物学相关性尚不清楚。与在细胞进入过程中附着唾液酸的中东呼吸综合征冠状病毒(MERS-CoV)不同,Calu3 细胞上的唾液酸抑制了沙贝冠状病毒的感染。因此,虽然沙贝冠状病毒可以与其他冠状病毒一样与细胞表面聚糖相互作用,但它们对聚糖的依赖性因病毒而异,这表明沙贝冠状病毒和 MERS-CoV 在其分化过程中适应了不同的细胞类型、组织或宿主。我们的发现为进一步探索沙贝冠状病毒糖基结合的生物学功能提供了重要线索,并增加了我们对塑造冠状病毒刺突进化的复杂力量的理解。沙贝冠状病毒的刺突 N 端结构域(S-NTD)高度多样化;然而,与受体结合结构域(RBD)相比,其功能仍在很大程度上未得到研究。在这里,我们表明沙贝冠状病毒 S-NTD 可以在系统发育上聚类为五个分支,并表现出不同程度的聚糖结合。我们还表明,与一些冠状病毒(包括 MERS-CoV)不同,Calu3(一种人肺细胞培养物)表面的唾液酸会抑制 SARS-CoV-2 和其他沙贝冠状病毒。这些结果表明,虽然糖基结合可能是不同冠状病毒家族共有的古老特征,但在感染过程中的功能结果可能会有所不同,反映了病毒的分化进化。我们的结果扩展了我们对不同沙贝冠状病毒 S-NTD 生物学功能的认识,并提供了有关冠状病毒刺突进化史的见解。