Suppr超能文献

实质血管系统在脑脊髓液示踪剂清除中的作用。

The role of the parenchymal vascular system in cerebrospinal fluid tracer clearance.

机构信息

Department of Radiology, Wayne State University, Detroit, MI, USA.

Department of Neurology, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI, 48202, USA.

出版信息

Eur Radiol. 2023 Jan;33(1):656-665. doi: 10.1007/s00330-022-09022-9. Epub 2022 Jul 19.

Abstract

OBJECTIVES

The current understanding of cerebral waste clearance (CWC) involves cerebrospinal fluid (CSF) participation but lacks convincing evidence for the direct participation of the parenchymal vascular system. The objective of this study was to evaluate the role of the parenchymal vascular system in CSF tracer clearance in rats.

METHODS

We used superparamagnetic iron oxide-enhanced susceptibility-weighted imaging (SPIO-SWI) and quantitative susceptibility mapping (QSM) methods to simultaneously study 7 T MRI signal changes in parenchymal veins, arteries, and their corresponding para-vascular spaces in 26 rats, following intra-cisterna magna (ICM) infusion of different CSF tracers (FeREX, Ferumoxytol, Fe-Dextran) to determine the amount of tracer in the artery and vein quantitatively.

RESULTS

We observed that the parenchymal venous system participated in CSF tracer clearance following ICM infusion of different MRI tracers with different concentrations of iron. Parenchymal venous participation was more obvious when 75 μg iron was injected. In the parenchymal veins, the relative mean (± SE) value of the susceptibility increased by 13.5 (± 1.0)% at 15 min post-tracer infusion (p < 0.01), and 33.6 (± 6.7)% at 45 min post-tracer infusion (p = 0.01), compared to baseline. In contrast to the parenchymal veins, a negligible amount of CSF tracer entered the parenchymal arteries: 1.3 (± 2.6)% at 15 min post-tracer infusion (p = 0.6), and 12 (± 19)% at 45 min post-tracer infusion (p = 0.5), compared to baseline.

CONCLUSIONS

MRI tracers can enter the parenchymal vascular system and more MRI tracers were observed in the cerebral venous than arterial vessels, suggesting the direct participation of parenchymal vascular system in CWC.

KEY POINTS

• MRI results revealed that the parenchymal venous system directly participates in cerebrospinal fluid tracer clearance following ICM infusion of MRI tracer. • Different sizes of MRI tracers can enter the parenchymal venous system.

摘要

目的

目前对脑内废物清除(CWC)的认识涉及脑脊液(CSF)的参与,但缺乏对实质脉管系统直接参与的令人信服的证据。本研究的目的是评估实质脉管系统在 CSF 示踪剂清除中的作用。

方法

我们使用超顺磁氧化铁增强的磁敏感加权成像(SPIO-SWI)和定量磁化率映射(QSM)方法,在 26 只大鼠中同时研究了脑室内(ICM)注入不同 CSF 示踪剂(FeREX、Ferumoxytol、Fe-Dextran)后实质静脉、动脉及其相应的血管周围间隙的 7T MRI 信号变化,以定量确定动脉和静脉中的示踪剂量。

结果

我们观察到,在 ICM 注入不同浓度铁的 MRI 示踪剂后,实质静脉系统参与了 CSF 示踪剂的清除。当注入 75μg 铁时,实质静脉的参与更为明显。在实质静脉中,与基线相比,示踪剂注入后 15 分钟(p<0.01)和 45 分钟(p=0.01)时,磁化率的平均(±SE)值增加了 13.5(±1.0)%。与实质静脉相反,很少有 CSF 示踪剂进入实质动脉:与基线相比,示踪剂注入后 15 分钟(p=0.6)和 45 分钟(p=0.5)时,分别为 1.3(±2.6)%和 12(±19)%。

结论

MRI 示踪剂可以进入实质脉管系统,并且在脑静脉中观察到比动脉血管更多的 MRI 示踪剂,这表明实质脉管系统直接参与了 CWC。

关键要点

·MRI 结果显示,在 ICM 注入 MRI 示踪剂后,实质静脉系统直接参与 CSF 示踪剂的清除。·不同大小的 MRI 示踪剂可以进入实质静脉系统。

相似文献

1
The role of the parenchymal vascular system in cerebrospinal fluid tracer clearance.
Eur Radiol. 2023 Jan;33(1):656-665. doi: 10.1007/s00330-022-09022-9. Epub 2022 Jul 19.
4
MRI investigation of glymphatic responses to Gd-DTPA infusion rates.
J Neurosci Res. 2018 Dec;96(12):1876-1886. doi: 10.1002/jnr.24325. Epub 2018 Sep 11.
5
Cerebrospinal and interstitial fluid transport via the glymphatic pathway modeled by optimal mass transport.
Neuroimage. 2017 May 15;152:530-537. doi: 10.1016/j.neuroimage.2017.03.021. Epub 2017 Mar 18.
6
Imaging glymphatic response to glioblastoma.
Cancer Imaging. 2023 Oct 30;23(1):107. doi: 10.1186/s40644-023-00628-w.
7
Glymphatic imaging using MRI.
J Magn Reson Imaging. 2020 Jan;51(1):11-24. doi: 10.1002/jmri.26892. Epub 2019 Aug 18.
8
Susceptibility weighted imaging and quantitative susceptibility mapping of the cerebral vasculature using ferumoxytol.
J Magn Reson Imaging. 2018 Mar;47(3):621-633. doi: 10.1002/jmri.25809. Epub 2017 Jul 21.
9
Impaired Glymphatic Transport in Spontaneously Hypertensive Rats.
J Neurosci. 2019 Aug 7;39(32):6365-6377. doi: 10.1523/JNEUROSCI.1974-18.2019. Epub 2019 Jun 17.
10
Contribution of Direct Cerebral Vascular Transport in Brain Substance Clearance.
Aging Dis. 2024 Apr 1;15(2):584-600. doi: 10.14336/AD.2023.0426.

引用本文的文献

1
Vascular Contribution to Cerebral Waste Clearance Affected by Aging or Diabetes.
Diagnostics (Basel). 2025 Apr 16;15(8):1019. doi: 10.3390/diagnostics15081019.
2
Nasal turbinate lymphatic obstruction: a proposed new paradigm in the etiology of essential hypertension.
Front Med (Lausanne). 2024 Aug 16;11:1380632. doi: 10.3389/fmed.2024.1380632. eCollection 2024.
3
Astrocyte regulation of extracellular space parameters across the sleep-wake cycle.
Front Cell Neurosci. 2024 Jun 26;18:1401698. doi: 10.3389/fncel.2024.1401698. eCollection 2024.
4
Contribution of Direct Cerebral Vascular Transport in Brain Substance Clearance.
Aging Dis. 2024 Apr 1;15(2):584-600. doi: 10.14336/AD.2023.0426.
5
Neurofluids and the glymphatic system: anatomy, physiology, and imaging.
Br J Radiol. 2023 Nov;96(1151):20230016. doi: 10.1259/bjr.20230016. Epub 2023 Jun 1.

本文引用的文献

3
Detecting sub-voxel microvasculature with USPIO-enhanced susceptibility-weighted MRI at 7 T.
Magn Reson Imaging. 2020 Apr;67:90-100. doi: 10.1016/j.mri.2019.12.010. Epub 2020 Jan 3.
4
Lymphatic Function in Autoimmune Diseases.
Front Immunol. 2019 Mar 20;10:519. doi: 10.3389/fimmu.2019.00519. eCollection 2019.
5
Measuring Glymphatic Flow in Man Using Quantitative Contrast-Enhanced MRI.
AJNR Am J Neuroradiol. 2019 Apr;40(4):648-651. doi: 10.3174/ajnr.A5931. Epub 2019 Jan 24.
6
Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension.
Nat Commun. 2018 Nov 19;9(1):4878. doi: 10.1038/s41467-018-07318-3.
8
MRI investigation of glymphatic responses to Gd-DTPA infusion rates.
J Neurosci Res. 2018 Dec;96(12):1876-1886. doi: 10.1002/jnr.24325. Epub 2018 Sep 11.
10
Quantitative blood flow measurement in rat brain with multiphase arterial spin labelling magnetic resonance imaging.
J Cereb Blood Flow Metab. 2019 Aug;39(8):1557-1569. doi: 10.1177/0271678X18756218. Epub 2018 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验