Suppr超能文献

基于球体的生物制造的数学和计算模型。

Mathematical and computational models in spheroid-based biofabrication.

机构信息

Center for Modeling Biological Systems and Data Analysis, Department of Functional Sciences, Victor Babes University of Medicine and Pharmacy Timisoara, Piata Eftimie Murgu Nr. 2-4, Timisoara 300041, Romania.

Department of Automation and Applied Informatics, Politehnica University of Timisoara, Timisoara 300006, Romania.

出版信息

Acta Biomater. 2023 Jul 15;165:125-139. doi: 10.1016/j.actbio.2022.07.024. Epub 2022 Jul 16.

Abstract

Ubiquitous in embryonic development, tissue fusion is of interest to tissue engineers who use tissue spheroids or organoids as building blocks of three-dimensional (3D) multicellular constructs. This review presents mathematical models and computer simulations of the fusion of tissue spheroids. The motivation of this study stems from the need to predict the post-printing evolution of 3D bioprinted constructs. First, we provide a brief overview of differential adhesion, the main morphogenetic mechanism involved in post-printing structure formation. It will be shown that clusters of cohesive cells behave as an incompressible viscous fluid on the time scale of hours. The discussion turns then to mathematical models based on the continuum hydrodynamics of highly viscous liquids and on statistical mechanics. Next, we analyze the validity and practical use of computational models of multicellular self-assembly in live constructs created by tissue spheroid bioprinting. Finally, we discuss the perspectives of the field as machine learning starts to reshape experimental design, and modular robotic workstations tend to alleviate the burden of repetitive tasks in biofabrication. STATEMENT OF SIGNIFICANCE: Bioprinted constructs are living systems, which evolve via morphogenetic mechanisms known from developmental biology. This review presents mathematical and computational tools devised for modeling post-printing structure formation. They help achieving a desirable outcome without expensive optimization experiments. While previous reviews mainly focused on assumptions, technical details, strengths, and limitations of computational models of multicellular self-assembly, this article discusses their validity and practical use in biofabrication. It also presents an overview of mathematical models that proved to be useful in the evaluation of experimental data on tissue spheroid fusion, and in the calibration of computational models. Finally, the perspectives of the field are discussed in the advent of robotic biofabrication platforms and bioprinting process optimization by machine learning.

摘要

组织融合在胚胎发育中普遍存在,这引起了组织工程师的兴趣,他们使用组织球体或类器官作为三维(3D)多细胞构建体的构建块。本文综述了组织球体融合的数学模型和计算机模拟。本研究的动机源于需要预测 3D 生物打印构建体打印后的演变。首先,我们简要概述了微分黏附,这是打印后结构形成中涉及的主要形态发生机制。结果表明,在数小时的时间尺度上,具有内聚性的细胞簇表现为不可压缩粘性流体。然后,我们将讨论转向基于高度粘性液体连续体流体动力学和统计力学的数学模型。接下来,我们分析了基于组织球体生物打印创建的活体构建体中多细胞自组装的计算模型的有效性和实际用途。最后,我们讨论了该领域的前景,因为机器学习开始重塑实验设计,模块化机器人工作站倾向于减轻生物制造中重复任务的负担。

意义陈述

生物打印的构建体是活体系统,它们通过发育生物学中已知的形态发生机制进行演变。本综述介绍了为模拟打印后结构形成而设计的数学和计算工具。它们有助于在无需昂贵的优化实验的情况下实现理想的结果。虽然之前的综述主要集中在多细胞自组装计算模型的假设、技术细节、优点和局限性上,但本文讨论了它们在生物制造中的有效性和实际用途。它还介绍了在评估组织球体融合实验数据以及校准计算模型方面被证明有用的数学模型概述。最后,在机器人生物制造平台和通过机器学习进行生物打印过程优化的出现的背景下,讨论了该领域的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验