Suppr超能文献

多标度分形检验时间序列中跨尺度相互作用的非线性。

Multifractal test for nonlinearity of interactions across scales in time series.

机构信息

Department of Psychology, State University of New York-New Paltz, New Paltz, NY, USA.

Department of Psychiatry, University of California-San Diego, San Diego, CA, USA.

出版信息

Behav Res Methods. 2023 Aug;55(5):2249-2282. doi: 10.3758/s13428-022-01866-9. Epub 2022 Jul 19.

Abstract

The creativity and emergence of biological and psychological behavior tend to be nonlinear, and correspondingly, biological and psychological measures contain degrees of irregularity. The linear model might fail to reduce these measurements to a sum of independent random factors (yielding a stable mean for the measurement), implying nonlinear changes over time. The present work reviews some of the concepts implicated in nonlinear changes over time and details the mathematical steps involved in their identification. It introduces multifractality as a mathematical framework helpful in determining whether and to what degree the measured series exhibits nonlinear changes over time. These mathematical steps include multifractal analysis and surrogate data production for resolving when multifractality entails nonlinear changes over time. Ultimately, when measurements fail to fit the structures of the traditional linear model, multifractal modeling allows for making those nonlinear excursions explicit, that is, to come up with a quantitative estimate of how strongly events may interact across timescales. This estimate may serve some interests as merely a potentially statistically significant indicator of independence failing to hold, but we suspect that this estimate might serve more generally as a predictor of perceptuomotor or cognitive performance.

摘要

生物和心理行为的创造性和出现往往是非线性的,相应地,生物和心理措施包含不规则的程度。线性模型可能无法将这些测量值简化为独立随机因素的总和(得出测量值的稳定平均值),这意味着随着时间的推移会发生非线性变化。本工作回顾了一些与随时间非线性变化相关的概念,并详细介绍了识别这些概念所涉及的数学步骤。它介绍了多重分形性作为一个数学框架,有助于确定所测量的序列是否以及在多大程度上随时间表现出非线性变化。这些数学步骤包括多重分形分析和替代数据生成,以解决多重分形性何时意味着随时间的非线性变化。最终,当测量值不符合传统线性模型的结构时,多重分形建模允许明确这些非线性偏离,即,提出一个关于事件在时间尺度上可能相互作用的强烈程度的定量估计。该估计可能仅作为独立性不成立的潜在统计学显著指标,但是我们怀疑该估计可能更普遍地作为感知运动或认知表现的预测指标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验