Suppr超能文献

d-脯氨酸还原酶是艰难梭菌依赖脯氨酸生长的基础。

d-Proline Reductase Underlies Proline-Dependent Growth of Clostridioides difficile.

机构信息

Burnett School of Biomedical Sciences, College of Medicine, University of Central Floridagrid.170430.1, Orlando, Florida, USA.

出版信息

J Bacteriol. 2022 Aug 16;204(8):e0022922. doi: 10.1128/jb.00229-22. Epub 2022 Jul 13.

Abstract

Clostridioides difficile is a nosocomial pathogen that colonizes the gut and causes diarrhea, colitis, and severe inflammation. Recently, C. difficile has been shown to use toxin-mediated inflammation to promote host collagen degradation, which releases several amino acids into the environment. Amino acids act as electron donors and acceptors in Stickland metabolism, an anaerobic process involving redox reactions between pairs of amino acids. Proline, glycine, and hydroxyproline are the three main constituents of collagen and are assumed to act as electron acceptors, but their exact effects on the growth and physiology of C. difficile are still unclear. Using three standard culture media (supplemented brain heart infusion [BHIS], tryptone-yeast [TY], and minimal medium [CDMM]) supplemented with proline, glycine, or hydroxyproline, we grew C. difficile strains R20291, JIR8094, and a panel of mutants unable to express the Stickland selenoenzymes d-proline reductase and glycine reductase. In the wild-type strains, growth yields in rich media (BHIS and TY) were higher with proline and hydroxyproline but not glycine; moreover, proline-stimulated growth yields required the activity of d-proline reductase, whereas hydroxyproline-stimulated growth yields were independent of its activity. While assumed to be a proline auxotroph, C. difficile could surprisingly grow in a defined medium (CDMM) without proline but only if d-proline reductase was absent. We believe the mere presence of this enzyme ultimately determines the organism's strict dependence on proline and likely defines the bioenergetic priorities for thriving in the host. Finally, we demonstrated that addition of proline and hydroxyproline to the culture medium could reduce toxin production but not in cells lacking selenoproteins. Stickland metabolism is a core facet of C. difficile physiology that likely plays a major role in host colonization. Here, we carefully delineate the effects of each amino acid on the growth of C. difficile with respect to the selenoenzymes d-proline reductase and glycine reductase. Moreover, we report that d-proline reductase forces C. difficile to strictly depend on proline for growth. Finally, we provide evidence that proline and hydroxyproline suppress toxin production and that selenoproteins are involved in this mechanism. Our findings highlight the significance of selenium-dependent Stickland reactions and may provide insight on what occurs during host infection, especially as it relates to the decision to colonize based on proline as a nutrient.

摘要

艰难梭菌是一种医院获得性病原体,定植于肠道并引发腹泻、结肠炎和严重炎症。最近,艰难梭菌已被证明利用毒素介导的炎症促进宿主胶原降解,从而将几种氨基酸释放到环境中。氨基酸在 Stickland 代谢中作为电子供体和受体起作用,Stickland 代谢是一种涉及氨基酸对之间氧化还原反应的厌氧过程。脯氨酸、甘氨酸和羟脯氨酸是胶原的三种主要成分,被认为是电子受体,但它们对艰难梭菌生长和生理学的确切影响仍不清楚。我们使用三种标准培养基(补充脑心浸液[BHIS]、酵母-胰蛋白胨[TY]和最小培养基[CDMM])补充脯氨酸、甘氨酸或羟脯氨酸,培养艰难梭菌 R20291、JIR8094 菌株和一组无法表达 Stickland 硒酶 d-脯氨酸还原酶和甘氨酸还原酶的突变体。在野生型菌株中,在富含营养的培养基(BHIS 和 TY)中,脯氨酸和羟脯氨酸的生长产率更高,但甘氨酸则不然;此外,脯氨酸刺激的生长产率需要 d-脯氨酸还原酶的活性,而羟脯氨酸刺激的生长产率则与其活性无关。尽管被认为是脯氨酸营养缺陷型,但令人惊讶的是,艰难梭菌在没有脯氨酸的限定培养基(CDMM)中也能生长,但前提是不存在 d-脯氨酸还原酶。我们认为,仅仅存在这种酶最终决定了该生物体对脯氨酸的严格依赖性,并可能定义了其在宿主中茁壮成长的生物能量优先级。最后,我们证明了在培养基中添加脯氨酸和羟脯氨酸可以减少毒素的产生,但在缺乏硒蛋白的细胞中则不行。Stickland 代谢是艰难梭菌生理学的核心方面,可能在宿主定植中发挥主要作用。在这里,我们仔细研究了每种氨基酸对 d-脯氨酸还原酶和甘氨酸还原酶的艰难梭菌生长的影响。此外,我们报告 d-脯氨酸还原酶迫使艰难梭菌严格依赖脯氨酸才能生长。最后,我们提供了证据表明脯氨酸和羟脯氨酸抑制毒素的产生,并且硒蛋白参与了这种机制。我们的研究结果强调了依赖硒的 Stickland 反应的重要性,并可能为宿主感染期间发生的情况提供一些见解,特别是与基于脯氨酸作为营养物质决定定植的决策有关。

相似文献

1
d-Proline Reductase Underlies Proline-Dependent Growth of Clostridioides difficile.
J Bacteriol. 2022 Aug 16;204(8):e0022922. doi: 10.1128/jb.00229-22. Epub 2022 Jul 13.
3
Analysis of proline reduction in the nosocomial pathogen Clostridium difficile.
J Bacteriol. 2006 Dec;188(24):8487-95. doi: 10.1128/JB.01370-06. Epub 2006 Oct 13.
4
Proline-dependent regulation of Clostridium difficile Stickland metabolism.
J Bacteriol. 2013 Feb;195(4):844-54. doi: 10.1128/JB.01492-12. Epub 2012 Dec 7.
5
Reconsidering the in vivo functions of Clostridial Stickland amino acid fermentations.
Anaerobe. 2022 Aug;76:102600. doi: 10.1016/j.anaerobe.2022.102600. Epub 2022 Jun 13.
8
Glycine fermentation by promotes virulence and spore formation, and is induced by host cathelicidin.
Infect Immun. 2023 Oct 17;91(10):e0031923. doi: 10.1128/iai.00319-23. Epub 2023 Sep 27.
9
Characterizing metabolic drivers of infection with activity-based hydrazine probes.
Front Pharmacol. 2023 Jan 26;14:1074619. doi: 10.3389/fphar.2023.1074619. eCollection 2023.
10
exploits xanthine and uric acid as nutrients by utilizing a selenium-dependent catabolic pathway.
Microbiol Spectr. 2024 Oct 3;12(10):e0084424. doi: 10.1128/spectrum.00844-24. Epub 2024 Aug 21.

引用本文的文献

1
Phenotypic analysis of various ribotypes reveals consistency among core processes.
Appl Environ Microbiol. 2025 Jun 24:e0096425. doi: 10.1128/aem.00964-25.
2
Analysis of Essential Genes in by CRISPRi and Tn-seq.
bioRxiv. 2025 Jun 9:2025.06.04.657922. doi: 10.1101/2025.06.04.657922.
3
Proline Stickland fermentation supports spore maturation.
Appl Environ Microbiol. 2025 Jul 23;91(7):e0055125. doi: 10.1128/aem.00551-25. Epub 2025 Jun 4.
5
Adaptation mechanisms of Clostridioides difficile to auranofin and its impact on human gut microbiota.
NPJ Biofilms Microbiomes. 2024 Sep 17;10(1):86. doi: 10.1038/s41522-024-00551-3.
6
exploits xanthine and uric acid as nutrients by utilizing a selenium-dependent catabolic pathway.
Microbiol Spectr. 2024 Oct 3;12(10):e0084424. doi: 10.1128/spectrum.00844-24. Epub 2024 Aug 21.
7
Formation of the pyruvoyl-dependent proline reductase Prd from requires the maturation enzyme PrdH.
PNAS Nexus. 2024 Jun 25;3(7):pgae249. doi: 10.1093/pnasnexus/pgae249. eCollection 2024 Jul.
8
Glycine fermentation by promotes virulence and spore formation, and is induced by host cathelicidin.
Infect Immun. 2023 Oct 17;91(10):e0031923. doi: 10.1128/iai.00319-23. Epub 2023 Sep 27.

本文引用的文献

1
The Alternative Sigma Factor SigL Influences Toxin Production, Sporulation, and Cell Surface Properties.
Front Microbiol. 2022 May 11;13:871152. doi: 10.3389/fmicb.2022.871152. eCollection 2022.
3
Oxidative ornithine metabolism supports non-inflammatory C. difficile colonization.
Nat Metab. 2022 Jan;4(1):19-28. doi: 10.1038/s42255-021-00506-4. Epub 2022 Jan 6.
4
Bile acid-independent protection against Clostridioides difficile infection.
PLoS Pathog. 2021 Oct 19;17(10):e1010015. doi: 10.1371/journal.ppat.1010015. eCollection 2021 Oct.
5
Novel Drivers of Virulence in Clostridioides difficile Identified via Context-Specific Metabolic Network Analysis.
mSystems. 2021 Oct 26;6(5):e0091921. doi: 10.1128/mSystems.00919-21. Epub 2021 Oct 5.
6
C. difficile exploits a host metabolite produced during toxin-mediated disease.
Nature. 2021 May;593(7858):261-265. doi: 10.1038/s41586-021-03502-6. Epub 2021 Apr 28.
7
The Selenophosphate Synthetase Gene, , Is Important for Clostridioides difficile Physiology.
J Bacteriol. 2021 May 20;203(12):e0000821. doi: 10.1128/JB.00008-21. Epub 2021 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验