Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583.
NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore 117456.
ACS Synth Biol. 2022 Aug 19;11(8):2901-2906. doi: 10.1021/acssynbio.2c00123. Epub 2022 Jul 22.
Modeling in synthetic biology constitutes a powerful means in our continuous search for improved performance with a rational Design-Build-Test-Learn approach. Particularly, kinetic models unravel system dynamics and enable system analysis for guiding experimental design. However, a systematic yet modular pipeline that allows one to identify the appropriate model and guide the experimental designs while tracing the entire model development and analysis is still lacking. Here, we develop BMSS2, a unified tool that streamlines and automates model selection by combining information criterion ranking with upstream and parallel analysis algorithms. These include Bayesian parameter inference, and identifiability analysis, and global sensitivity analysis. In addition, the database-driven design supports interactive model storage/retrieval to encourage reusability and facilitate automated model selection. This allows ease of model manipulation and deposition for the selection and analysis, thus enabling better utilization of models in guiding experimental design.
在合成生物学中,建模是一种强有力的手段,我们可以通过合理的设计-构建-测试-学习方法不断寻求性能的提升。特别是,动力学模型可以揭示系统动态,并进行系统分析,从而指导实验设计。然而,目前仍然缺乏一种系统而模块化的流程,使得我们能够在追踪整个模型开发和分析的同时,确定合适的模型并指导实验设计。在这里,我们开发了 BMSS2,这是一个统一的工具,通过将信息准则排名与上游和并行分析算法相结合,简化并自动化了模型选择。这些算法包括贝叶斯参数推断和可识别性分析以及全局敏感性分析。此外,数据库驱动的设计支持交互式模型存储/检索,以鼓励可重用性并促进自动化模型选择。这使得模型操作和存储变得更加容易,从而可以更好地利用模型来指导实验设计。