Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.
Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford, OX1 3QU, UK.
Sci Rep. 2022 Jul 23;12(1):12606. doi: 10.1038/s41598-022-16896-8.
Motor neuron diseases such as amyotrophic lateral sclerosis are primarily characterized by motor neuron degeneration with additional involvement of non-neuronal cells, in particular, microglia. In previous work, we have established protocols for the differentiation of iPSC-derived spinal motor neurons and microglia. Here, we combine both cell lineages and establish a novel co-culture of iPSC-derived spinal motor neurons and microglia, which is compatible with motor neuron identity and function. Co-cultured microglia express key identity markers and transcriptomically resemble primary human microglia, have highly dynamic ramifications, are phagocytically competent, release relevant cytokines and respond to stimulation. Further, they express key amyotrophic lateral sclerosis-associated genes and release disease-relevant biomarkers. This novel and authentic human model system facilitates the study of physiological motor neuron-microglia crosstalk and will allow the investigation of non-cell-autonomous phenotypes in motor neuron diseases such as amyotrophic lateral sclerosis.
运动神经元疾病,如肌萎缩侧索硬化症,主要表现为运动神经元退化,同时还伴有非神经元细胞的参与,特别是小胶质细胞。在之前的工作中,我们已经建立了 iPSC 衍生的脊髓运动神经元和小胶质细胞分化的方案。在这里,我们将这两种细胞谱系结合起来,建立了一种新型的 iPSC 衍生的脊髓运动神经元和小胶质细胞共培养物,这种共培养物与运动神经元的特性和功能兼容。共培养的小胶质细胞表达关键的特征性标志物,在转录组水平上类似于原代人小胶质细胞,具有高度动态的分支,具有吞噬能力,释放相关细胞因子并对刺激做出反应。此外,它们还表达关键的肌萎缩侧索硬化症相关基因,并释放与疾病相关的生物标志物。这种新型的、真实的人类模型系统有助于研究生理运动神经元-小胶质细胞相互作用,并将允许研究肌萎缩侧索硬化症等运动神经元疾病中非细胞自主性表型。