Division of Nephrology, Dialysis and Renal Transplantation, Azienda Ospedaliera Universitaria Policlinico di Modena, Modena, Italy.
Department of Engineering "Enzo Ferrari," University of Modena and Reggio Emilia, Modena, Italy.
Clin J Am Soc Nephrol. 2022 Sep;17(9):1316-1324. doi: 10.2215/CJN.01760222. Epub 2022 Jul 26.
Digital pathology and artificial intelligence offer new opportunities for automatic histologic scoring. We applied a deep learning approach to IgA nephropathy biopsy images to develop an automatic histologic prognostic score, assessed against ground truth (kidney failure) among patients with IgA nephropathy who were treated over 39 years. We assessed noninferiority in comparison with the histologic component of currently validated predictive tools. We correlated additional histologic features with our deep learning predictive score to identify potential additional predictive features.
DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Training for deep learning was performed with randomly selected, digitalized, cortical Periodic acid-Schiff-stained sections images (363 kidney biopsy specimens) to develop our deep learning predictive score. We estimated noninferiority using the area under the receiver operating characteristic curve (AUC) in a randomly selected group (95 biopsy specimens) against the gold standard Oxford classification (MEST-C) scores used by the International IgA Nephropathy Prediction Tool and the clinical decision supporting system for estimating the risk of kidney failure in IgA nephropathy. We assessed additional potential predictive histologic features against a subset (20 kidney biopsy specimens) with the strongest and weakest deep learning predictive scores.
We enrolled 442 patients; the 10-year kidney survival was 78%, and the study median follow-up was 6.7 years. Manual MEST-C showed no prognostic relationship for the endocapillary parameter only. The deep learning predictive score was not inferior to MEST-C applied using the International IgA Nephropathy Prediction Tool and the clinical decision supporting system (AUC of 0.84 versus 0.77 and 0.74, respectively) and confirmed a good correlation with the tubolointerstitial score (r=0.41, <0.01). We observed no correlations between the deep learning prognostic score and the mesangial, endocapillary, segmental sclerosis, and crescent parameters. Additional potential predictive histopathologic features incorporated by the deep learning predictive score included () inflammation within areas of interstitial fibrosis and tubular atrophy and () hyaline casts.
The deep learning approach was noninferior to manual histopathologic reporting and considered prognostic features not currently included in MEST-C assessment.
This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2022_07_26_CJN01760222.mp3.
数字病理学和人工智能为自动组织学评分提供了新的机会。我们应用深度学习方法对 IgA 肾病活检图像进行分析,以开发一种自动组织学预后评分,并在接受治疗超过 39 年的 IgA 肾病患者中,根据组织学结果(肾衰竭)进行评估。我们评估了与目前验证的预测工具的组织学成分相比的非劣效性。我们还将其他组织学特征与我们的深度学习预测评分相关联,以确定潜在的附加预测特征。
设计、设置、参与者和测量:通过对随机选择的数字化皮质过碘酸雪夫染色切片图像(363 个肾脏活检标本)进行深度学习训练,开发我们的深度学习预测评分。我们使用接受者操作特征曲线下面积(AUC)来估计非劣效性,在随机选择的组(95 个活检标本)中,与国际 IgA 肾病预测工具和临床决策支持系统中使用的牛津分类(MEST-C)评分进行比较,该评分用于估计 IgA 肾病患者肾衰竭的风险。我们还评估了与具有最强和最弱深度学习预测评分的子集中的 20 个肾脏活检标本相关的其他潜在预测组织学特征。
我们纳入了 442 名患者;10 年肾脏生存率为 78%,研究的中位随访时间为 6.7 年。手动 MEST-C 仅对毛细血管内参数无预后关系。深度学习预测评分不劣于国际 IgA 肾病预测工具和临床决策支持系统应用的 MEST-C(AUC 分别为 0.84、0.77 和 0.74),并与肾小管间质评分具有良好的相关性(r=0.41,<0.01)。我们没有观察到深度学习预后评分与系膜、毛细血管内、节段性硬化和新月体参数之间的相关性。深度学习预测评分中纳入的其他潜在预测组织病理学特征包括(1)间质纤维化和肾小管萎缩区域内的炎症和(2)透明样小体。
深度学习方法不劣于手动组织病理学报告,并考虑了目前不包括在 MEST-C 评估中的预后特征。
本文包含一个播客,网址为 https://www.asn-online.org/media/podcast/CJASN/2022_07_26_CJN01760222.mp3。