Adil Nazakat, Xiao Xufeng, Feng Xinlong
College of Mathematics and System Sciences, Xinjiang University, Urumqi 830017, China.
Entropy (Basel). 2022 Jun 22;24(7):857. doi: 10.3390/e24070857.
In this paper, we present a fully Lagrangian method based on the radial basis function (RBF) finite difference (FD) method for solving convection-diffusion partial differential equations (PDEs) on evolving surfaces. Surface differential operators are discretized by the tangent plane approach using Gaussian RBFs augmented with two-dimensional (2D) polynomials. The main advantage of our method is the simplicity of calculating differentiation weights. Additionally, we couple the method with anisotropic RBFs (ARBFs) to obtain more accurate numerical solutions for the anisotropic growth of surfaces. In the ARBF interpolation, the Euclidean distance is replaced with a suitable metric that matches the anisotropic surface geometry. Therefore, it will lead to a good result on the aspects of stability and accuracy of the RBF-FD method for this type of problem. The performance of this method is shown for various convection-diffusion equations on evolving surfaces, which include the anisotropic growth of surfaces and growth coupled with the solutions of PDEs.
在本文中,我们提出了一种基于径向基函数(RBF)有限差分(FD)法的全拉格朗日方法,用于求解演化曲面上的对流扩散偏微分方程(PDE)。曲面微分算子通过切平面方法离散化,该方法使用用二维(2D)多项式增强的高斯径向基函数。我们方法的主要优点是计算微分权重简单。此外,我们将该方法与各向异性径向基函数(ARBF)相结合,以获得曲面各向异性生长的更精确数值解。在各向异性径向基函数插值中,欧几里得距离被与各向异性曲面几何形状匹配的合适度量所取代。因此,对于这类问题,在径向基函数有限差分法的稳定性和准确性方面将产生良好的结果。本文展示了该方法在演化曲面上各种对流扩散方程中的性能,这些方程包括曲面的各向异性生长以及与偏微分方程解耦合的生长。