Suppr超能文献

一种基于有效链接的动态社交网络影响力最大化算法。

An Influence Maximization Algorithm for Dynamic Social Networks Based on Effective Links.

作者信息

Fu Baojun, Zhang Jianpei, Bai Hongna, Yang Yuting, He Yu

机构信息

College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China.

College of Computer Science and Information Engineering, Harbin Normal University, Harbin 150025, China.

出版信息

Entropy (Basel). 2022 Jun 30;24(7):904. doi: 10.3390/e24070904.

Abstract

The connection between users in social networks can be maintained for a certain period of time, and the static network structure formed provides the basic conditions for various kinds of research, especially for discovering customer groups that can generate great influence, which is important for product promotion, epidemic prevention and control, and public opinion supervision, etc. However, the computational process of influence maximization ignores the timeliness of interaction behaviors among users, the screened target users cannot diffuse information well, and the time complexity of relying on greedy rules to handle the influence maximization problem is high. Therefore, this paper analyzes the influence of the interaction between nodes in dynamic social networks on information dissemination, extends the classical independent cascade model to a dynamic social network dissemination model based on effective links, and proposes a two-stage influence maximization solution algorithm (Outdegree Effective Link-OEL) based on node degree and effective links to enhance the efficiency of problem solving. In order to verify the effectiveness of the algorithm, five typical influence maximization methods are compared and analyzed on four real data sets. The results show that the OEL algorithm has good performance in propagation range and running time.

摘要

社交网络中用户之间的连接可以在一定时期内得以维持,所形成的静态网络结构为各类研究提供了基础条件,特别是对于发现能产生重大影响的客户群体而言,这对产品推广、疫情防控以及舆论监督等都至关重要。然而,影响力最大化的计算过程忽略了用户间交互行为的时效性,筛选出的目标用户无法很好地传播信息,并且依靠贪心规则处理影响力最大化问题的时间复杂度很高。因此,本文分析了动态社交网络中节点间交互对信息传播的影响,将经典的独立级联模型扩展为基于有效链接的动态社交网络传播模型,并提出了一种基于节点度和有效链接的两阶段影响力最大化求解算法(出度有效链接 - OEL),以提高问题解决的效率。为验证该算法的有效性,在四个真实数据集上对五种典型的影响力最大化方法进行了比较分析。结果表明,OEL算法在传播范围和运行时间方面具有良好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/febe/9322785/93df76b5f900/entropy-24-00904-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验