Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA.
Materials Science and Technology Division, U.S. Naval Research Laboratory, Code 6300, Washington, DC 20375, USA.
Int J Mol Sci. 2022 Jul 12;23(14):7690. doi: 10.3390/ijms23147690.
Nanoarchitectural control of matter is crucial for next-generation technologies. DNA origami templates are harnessed to accurately position single molecules; however, direct single molecule evidence is lacking regarding how well DNA origami can control the orientation of such molecules in three-dimensional space, as well as the factors affecting control. Here, we present two strategies for controlling the polar () and in-plane azimuthal () angular orientations of cyanine Cy5 single molecules tethered on rationally-designed DNA origami templates that are physically adsorbed (physisorbed) on glass substrates. By using dipolar imaging to evaluate Cy5's orientation and super-resolution microscopy, the absolute spatial orientation of Cy5 is calculated relative to the DNA template. The sequence-dependent partial intercalation of Cy5 is discovered and supported theoretically using density functional theory and molecular dynamics simulations, and it is harnessed as our first strategy to achieve control for a full revolution with dispersion as small as ±4.5°. In our second strategy, control is achieved by mechanically stretching the Cy5 from its two tethers, being the dispersion ±10.3° for full stretching. These results can in principle be applied to any single molecule, expanding in this way the capabilities of DNA as a functional templating material for single-molecule orientation control. The experimental and modeling insights provided herein will help engineer similar self-assembling molecular systems based on polymers, such as RNA and proteins.
对物质的纳米结构控制对于下一代技术至关重要。DNA 折纸模板被用来精确定位单个分子;然而,直接的单分子证据缺乏关于 DNA 折纸术在三维空间中控制这些分子的取向的能力,以及影响控制的因素。在这里,我们提出了两种策略来控制氰基 Cy5 单分子的极性()和平面方位角()角取向,这些单分子通过合理设计的 DNA 折纸模板连接,并物理吸附(物理吸附)在玻璃基底上。通过使用偶极子成像来评估 Cy5 的取向和超分辨率显微镜,计算出 Cy5 的绝对空间取向相对于 DNA 模板。发现了 Cy5 的序列依赖性部分嵌入,并使用密度泛函理论和分子动力学模拟进行了理论支持,这是我们实现完整旋转控制的第一种策略,分散度小至±4.5°。在我们的第二种策略中,通过从两个连接物机械拉伸 Cy5 来实现 控制,最大拉伸时的分散度为±10.3°。这些结果原则上可以应用于任何单分子,从而扩展了 DNA 作为单分子取向控制的功能模板材料的能力。本文提供的实验和建模见解将有助于设计基于聚合物(如 RNA 和蛋白质)的类似自组装分子系统。