Suppr超能文献

在玻璃衬底上物理吸附的 DNA 折纸模板上固定的单个分子的空间取向控制策略:嵌入和拉伸。

Strategies for Controlling the Spatial Orientation of Single Molecules Tethered on DNA Origami Templates Physisorbed on Glass Substrates: Intercalation and Stretching.

机构信息

Micron School of Materials Science and Engineering, Boise State University, Boise, ID 83725, USA.

Materials Science and Technology Division, U.S. Naval Research Laboratory, Code 6300, Washington, DC 20375, USA.

出版信息

Int J Mol Sci. 2022 Jul 12;23(14):7690. doi: 10.3390/ijms23147690.

Abstract

Nanoarchitectural control of matter is crucial for next-generation technologies. DNA origami templates are harnessed to accurately position single molecules; however, direct single molecule evidence is lacking regarding how well DNA origami can control the orientation of such molecules in three-dimensional space, as well as the factors affecting control. Here, we present two strategies for controlling the polar () and in-plane azimuthal () angular orientations of cyanine Cy5 single molecules tethered on rationally-designed DNA origami templates that are physically adsorbed (physisorbed) on glass substrates. By using dipolar imaging to evaluate Cy5's orientation and super-resolution microscopy, the absolute spatial orientation of Cy5 is calculated relative to the DNA template. The sequence-dependent partial intercalation of Cy5 is discovered and supported theoretically using density functional theory and molecular dynamics simulations, and it is harnessed as our first strategy to achieve control for a full revolution with dispersion as small as ±4.5°. In our second strategy, control is achieved by mechanically stretching the Cy5 from its two tethers, being the dispersion ±10.3° for full stretching. These results can in principle be applied to any single molecule, expanding in this way the capabilities of DNA as a functional templating material for single-molecule orientation control. The experimental and modeling insights provided herein will help engineer similar self-assembling molecular systems based on polymers, such as RNA and proteins.

摘要

对物质的纳米结构控制对于下一代技术至关重要。DNA 折纸模板被用来精确定位单个分子;然而,直接的单分子证据缺乏关于 DNA 折纸术在三维空间中控制这些分子的取向的能力,以及影响控制的因素。在这里,我们提出了两种策略来控制氰基 Cy5 单分子的极性()和平面方位角()角取向,这些单分子通过合理设计的 DNA 折纸模板连接,并物理吸附(物理吸附)在玻璃基底上。通过使用偶极子成像来评估 Cy5 的取向和超分辨率显微镜,计算出 Cy5 的绝对空间取向相对于 DNA 模板。发现了 Cy5 的序列依赖性部分嵌入,并使用密度泛函理论和分子动力学模拟进行了理论支持,这是我们实现完整旋转控制的第一种策略,分散度小至±4.5°。在我们的第二种策略中,通过从两个连接物机械拉伸 Cy5 来实现 控制,最大拉伸时的分散度为±10.3°。这些结果原则上可以应用于任何单分子,从而扩展了 DNA 作为单分子取向控制的功能模板材料的能力。本文提供的实验和建模见解将有助于设计基于聚合物(如 RNA 和蛋白质)的类似自组装分子系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a03/9323263/747c37691404/ijms-23-07690-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验