Suppr超能文献

一种使用……检测正常或修饰的植物及藻类碳酸酐酶活性的快速方法

A Rapid Method for Detecting Normal or Modified Plant and Algal Carbonic Anhydrase Activity Using .

作者信息

Rai Ashwani K, DiMario Robert J, Kasili Remmy W, Groszmann Michael, Cousins Asaph B, Donze David, Moroney James V

机构信息

Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.

School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.

出版信息

Plants (Basel). 2022 Jul 20;11(14):1882. doi: 10.3390/plants11141882.

Abstract

In recent years, researchers have attempted to improve photosynthesis by introducing components from cyanobacterial and algal CO2-concentrating mechanisms (CCMs) into terrestrial C3 plants. For these attempts to succeed, we need to understand the CCM components in more detail, especially carbonic anhydrase (CA) and bicarbonate (HCO3−) transporters. Heterologous complementation systems capable of detecting carbonic anhydrase activity (i.e., catalysis of the pH-dependent interconversion between CO2 and HCO3−) or active HCO3− transport can be of great value in the process of introducing CCM components into terrestrial C3 plants. In this study, we generated a Saccharomyces cerevisiae CA knock-out (ΔNCE103 or ΔCA) that has a high-CO2-dependent phenotype (5% (v/v) CO2 in air). CAs produce HCO3− for anaplerotic pathways in S. cerevisiae; therefore, the unavailability of HCO3− for neutral lipid biosynthesis is a limitation for the growth of ΔCA in ambient levels of CO2 (0.04% (v/v) CO2 in air). ΔCA can be complemented for growth at ambient levels of CO2 by expressing a CA from human red blood cells. ΔCA was also successfully complemented for growth at ambient levels of CO2 through the expression of CAs from Chlamydomonas reinhardtii and Arabidopsis thaliana. The ΔCA strain is also useful for investigating the activity of modified CAs, allowing for quick screening of modified CAs before putting them into the plants. CA activity in the complemented ΔCA strains can be probed using the Wilbur−Anderson assay and by isotope exchange membrane-inlet mass spectrometry (MIMS). Other potential uses for this new ΔCA-based screening system are also discussed.

摘要

近年来,研究人员试图通过将蓝细菌和藻类的二氧化碳浓缩机制(CCM)中的成分引入陆生C3植物来改善光合作用。为使这些尝试取得成功,我们需要更详细地了解CCM成分,尤其是碳酸酐酶(CA)和碳酸氢根(HCO3−)转运体。能够检测碳酸酐酶活性(即催化CO2和HCO3−之间pH依赖性的相互转化)或活性HCO3−转运的异源互补系统,在将CCM成分引入陆生C3植物的过程中可能具有重要价值。在本研究中,我们构建了一种具有高二氧化碳依赖性表型(空气中5%(v/v)CO2)的酿酒酵母CA基因敲除株(ΔNCE103或ΔCA)。CA为酿酒酵母的回补途径产生HCO3−;因此,在环境CO2水平(空气中0.04%(v/v)CO2)下,HCO3−无法用于中性脂质生物合成是ΔCA生长的一个限制因素。通过表达来自人类红细胞的CA,ΔCA在环境CO2水平下的生长可得到互补。通过表达莱茵衣藻和拟南芥的CA,ΔCA在环境CO2水平下的生长也成功得到了互补。ΔCA菌株对于研究修饰CA的活性也很有用,可在将修饰CA引入植物之前进行快速筛选。可以使用威尔伯-安德森测定法和同位素交换膜进样质谱法(MIMS)来检测互补的ΔCA菌株中的CA活性。本文还讨论了这种基于新的ΔCA筛选系统的其他潜在用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90e6/9320139/65103cfda65a/plants-11-01882-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验