Suppr超能文献

深度学习在低 keV 虚拟单能双能 CT 中的图像重建的定量和定性评估。

Quantitative and qualitative assessments of deep learning image reconstruction in low-keV virtual monoenergetic dual-energy CT.

机构信息

Department of Diagnostic Radiology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.

Department of Clinical Medicine, University of Copenhagen, 2100, Copenhagen, Denmark.

出版信息

Eur Radiol. 2022 Oct;32(10):7098-7107. doi: 10.1007/s00330-022-09018-5. Epub 2022 Jul 27.

Abstract

OBJECTIVES

To evaluate a novel deep learning image reconstruction (DLIR) technique for dual-energy CT (DECT) derived virtual monoenergetic (VM) images compared to adaptive statistical iterative reconstruction (ASIR-V) in low kiloelectron volt (keV) images.

METHODS

We analyzed 30 venous phase acute abdominal DECT (80/140 kVp) scans. Data were reconstructed to ASIR-V and DLIR-High at four different keV levels (40, 50, 74, and 100) with 1- and 3-mm slice thickness. Quantitative Hounsfield unit (HU) and noise assessment were measured within the liver, aorta, fat, and muscle. Subjective assessment of image noise, sharpness, texture, and overall quality was performed by two board-certified radiologists.

RESULTS

DLIR reduced image noise by 19.9-35.5% (p < 0.001) compared to ASIR-V in all reconstructions at identical keV levels. Contrast-to-noise ratio (CNR) increased by 49.2-53.2% (p < 0.001) in DLIR 40-keV images compared to ASIR-V 50 keV, while no significant difference in noise was identified except for 1 and 3 mm in aorta and for 1-mm liver measurements, where ASIR-V 50 keV showed 5.5-6.8% (p < 0.002) lower noise levels. Qualitative assessment demonstrated significant improvement particularly in 1-mm reconstructions (p < 0.001). Lastly, DLIR 40 keV demonstrated comparable or improved image quality ratings when compared to ASIR-V 50 keV (p < 0.001 to 0.22).

CONCLUSION

DLIR significantly reduced image noise compared to ASIR-V. Qualitative assessment showed that DLIR significantly improved image quality particularly in thin sliced images. DLIR may facilitate 40 keV as a new standard for routine low-keV VM reconstruction in contrast-enhanced abdominal DECT.

KEY POINTS

• DLIR enables 40 keV as the routine low-keV VM reconstruction. • DLIR significantly reduced image noise compared to ASIR-V, across a wide range of keV levels in VM DECT images. • In low-keV VM reconstructions, improvements in image quality using DLIR were most evident and consistent in 1-mm sliced images.

摘要

目的

评估一种新的基于深度学习的图像重建(DLIR)技术,用于双能 CT(DECT)衍生的虚拟单能(VM)图像,与自适应统计迭代重建(ASIR-V)在低千伏(keV)图像中的比较。

方法

我们分析了 30 例静脉期急性腹部 DECT(80/140 kVp)扫描。将数据重建为 ASIR-V 和 DLIR-High,在四个不同的 keV 水平(40、50、74 和 100)下使用 1 和 3mm 层厚。在肝脏、主动脉、脂肪和肌肉内测量定量的亨氏单位(HU)和噪声评估。两名经过董事会认证的放射科医生进行了图像噪声、锐度、纹理和整体质量的主观评估。

结果

与相同 keV 水平下的 ASIR-V 相比,DLIR 在所有重建中降低了 19.9-35.5%(p<0.001)的图像噪声。与 ASIR-V 50keV 相比,DLIR 40keV 图像的对比噪声比(CNR)增加了 49.2-53.2%(p<0.001),但除了主动脉的 1 和 3mm 以及肝脏的 1mm 测量值外,噪声没有明显差异,其中 ASIR-V 50keV 显示出 5.5-6.8%(p<0.002)的较低噪声水平。定性评估显示出显著的改善,特别是在 1mm 重建中(p<0.001)。最后,与 ASIR-V 50keV 相比,DLIR 40keV 显示出可比或改善的图像质量评分(p<0.001 至 0.22)。

结论

与 ASIR-V 相比,DLIR 显著降低了图像噪声。定性评估表明,DLIR 显著改善了图像质量,特别是在薄层图像中。DLIR 可促进 40keV 成为常规腹部 DECT 增强对比剂低 keV VM 重建的新标准。

关键点

  1. DLIR 使 40keV 成为常规低 keV VM 重建的标准。

  2. 在 VM DECT 图像的宽 keV 范围内,与 ASIR-V 相比,DLIR 显著降低了图像噪声。

  3. 在低 keV VM 重建中,使用 DLIR 改善图像质量的效果在 1mm 切片图像中最为明显和一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验