Suppr超能文献

推断大脑中的语言计算的本质。

Inferring the nature of linguistic computations in the brain.

机构信息

Language and Computation in Neural Systems Group, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands.

Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands.

出版信息

PLoS Comput Biol. 2022 Jul 28;18(7):e1010269. doi: 10.1371/journal.pcbi.1010269. eCollection 2022 Jul.

Abstract

Sentences contain structure that determines their meaning beyond that of individual words. An influential study by Ding and colleagues (2016) used frequency tagging of phrases and sentences to show that the human brain is sensitive to structure by finding peaks of neural power at the rate at which structures were presented. Since then, there has been a rich debate on how to best explain this pattern of results with profound impact on the language sciences. Models that use hierarchical structure building, as well as models based on associative sequence processing, can predict the neural response, creating an inferential impasse as to which class of models explains the nature of the linguistic computations reflected in the neural readout. In the current manuscript, we discuss pitfalls and common fallacies seen in the conclusions drawn in the literature illustrated by various simulations. We conclude that inferring the neural operations of sentence processing based on these neural data, and any like it, alone, is insufficient. We discuss how to best evaluate models and how to approach the modeling of neural readouts to sentence processing in a manner that remains faithful to cognitive, neural, and linguistic principles.

摘要

句子的结构决定了其意义,而不仅仅是单个单词的意义。丁等(2016)的一项有影响力的研究使用短语和句子的频率标记来表明,人类大脑通过以结构呈现的速度在神经功率上找到峰值,从而对结构敏感。从那时起,关于如何最好地解释这种模式的结果,以及对语言科学产生深远影响的结果,就展开了丰富的争论。使用层次结构构建的模型,以及基于联想序列处理的模型,可以预测神经反应,从而在解释反映在神经读数中的语言计算的本质方面产生了推断上的僵局,即哪类模型解释了语言计算的本质。在当前的手稿中,我们讨论了各种模拟所说明的文献中得出的结论中存在的陷阱和常见谬论。我们的结论是,仅基于这些神经数据推断句子处理的神经操作,以及任何类似的操作,都是不够的。我们讨论了如何最好地评估模型,以及如何以一种仍然忠实于认知、神经和语言原则的方式处理句子处理的神经读数建模。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e008/9333253/d71e397453d0/pcbi.1010269.g001.jpg

相似文献

1
Inferring the nature of linguistic computations in the brain.
PLoS Comput Biol. 2022 Jul 28;18(7):e1010269. doi: 10.1371/journal.pcbi.1010269. eCollection 2022 Jul.
2
Delta-Band Neural Responses to Individual Words Are Modulated by Sentence Processing.
J Neurosci. 2023 Jun 28;43(26):4867-4883. doi: 10.1523/JNEUROSCI.0964-22.2023. Epub 2023 May 23.
4
Neural dynamics differentially encode phrases and sentences during spoken language comprehension.
PLoS Biol. 2022 Jul 14;20(7):e3001713. doi: 10.1371/journal.pbio.3001713. eCollection 2022 Jul.
5
Linguistic Structure and Meaning Organize Neural Oscillations into a Content-Specific Hierarchy.
J Neurosci. 2020 Dec 2;40(49):9467-9475. doi: 10.1523/JNEUROSCI.0302-20.2020. Epub 2020 Oct 23.
6
Combined eye tracking and fMRI reveals neural basis of linguistic predictions during sentence comprehension.
Cortex. 2015 Jul;68:33-47. doi: 10.1016/j.cortex.2015.04.011. Epub 2015 Apr 27.
7
Building by Syntax: The Neural Basis of Minimal Linguistic Structures.
Cereb Cortex. 2017 Jan 1;27(1):411-421. doi: 10.1093/cercor/bhv234.
8
Cortical tracking of constituent structure in language acquisition.
Cognition. 2018 Dec;181:135-140. doi: 10.1016/j.cognition.2018.08.019. Epub 2018 Sep 5.
9
Lists with and without Syntax: A New Approach to Measuring the Neural Processing of Syntax.
J Neurosci. 2021 Mar 10;41(10):2186-2196. doi: 10.1523/JNEUROSCI.1179-20.2021. Epub 2021 Jan 26.
10
Neural Signatures of Hierarchical Linguistic Structures in Second Language Listening Comprehension.
eNeuro. 2023 Jun 26;10(6). doi: 10.1523/ENEURO.0346-22.2023. Print 2023 Jun.

引用本文的文献

1
Structural and sequential regularities modulate phrase-rate neural tracking.
Sci Rep. 2024 Jul 18;14(1):16603. doi: 10.1038/s41598-024-67153-z.
2
"Not" in the brain and behavior.
PLoS Biol. 2024 May 31;22(5):e3002656. doi: 10.1371/journal.pbio.3002656. eCollection 2024 May.
4
Naturalistic Spoken Language Comprehension Is Supported by Alpha and Beta Oscillations.
J Neurosci. 2023 May 17;43(20):3718-3732. doi: 10.1523/JNEUROSCI.1500-22.2023. Epub 2023 Apr 14.

本文引用的文献

1
What neural oscillations can and cannot do for syntactic structure building.
Nat Rev Neurosci. 2023 Feb;24(2):113-128. doi: 10.1038/s41583-022-00659-5. Epub 2022 Dec 2.
3
Frequency-based neural discrimination in fast periodic visual stimulation.
Cortex. 2022 Mar;148:193-203. doi: 10.1016/j.cortex.2022.01.005. Epub 2022 Jan 31.
4
Acoustically Driven Cortical δ Oscillations Underpin Prosodic Chunking.
eNeuro. 2021 Jul 9;8(4). doi: 10.1523/ENEURO.0562-20.2021. Print 2021 Jul-Aug.
5
Learning hierarchical sequence representations across human cortex and hippocampus.
Sci Adv. 2021 Feb 19;7(8). doi: 10.1126/sciadv.abc4530. Print 2021 Feb.
6
Grammatical category and the neural processing of phrases.
Sci Rep. 2021 Jan 28;11(1):2446. doi: 10.1038/s41598-021-81901-5.
7
How Computational Modeling Can Force Theory Building in Psychological Science.
Perspect Psychol Sci. 2021 Jul;16(4):789-802. doi: 10.1177/1745691620970585. Epub 2021 Jan 22.
8
Theory Before the Test: How to Build High-Verisimilitude Explanatory Theories in Psychological Science.
Perspect Psychol Sci. 2021 Jul;16(4):682-697. doi: 10.1177/1745691620970604. Epub 2021 Jan 6.
9
Linguistic Structure and Meaning Organize Neural Oscillations into a Content-Specific Hierarchy.
J Neurosci. 2020 Dec 2;40(49):9467-9475. doi: 10.1523/JNEUROSCI.0302-20.2020. Epub 2020 Oct 23.
10
Rapid processing of neutral and angry expressions within ongoing facial stimulus streams: Is it all about isolated facial features?
PLoS One. 2020 Apr 24;15(4):e0231982. doi: 10.1371/journal.pone.0231982. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验