Suppr超能文献

溶酶体贮积症中纳米药物的血脑屏障转运改变。

Altered blood-brain barrier transport of nanotherapeutics in lysosomal storage diseases.

机构信息

Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA.

Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain.

出版信息

J Control Release. 2022 Sep;349:1031-1044. doi: 10.1016/j.jconrel.2022.07.022. Epub 2022 Aug 17.

Abstract

Treatment of neurological lysosomal storage disorders (LSDs) are limited because of impermeability of the blood-brain barrier (BBB) to macromolecules. Nanoformulations targeting BBB transcytosis are being explored, but the status of these routes in LSDs is unknown. We studied nanocarriers (NCs) targeted to the transferrin receptor (TfR), ganglioside GM1 or ICAM1, associated to the clathrin, caveolar or cell adhesion molecule (CAM) routes, respectively. We used brain endothelial cells and mouse models of acid sphingomyelinase-deficient Niemann Pick disease (NPD), and postmortem LSD patients' brains, all compared to respective controls. NC transcytosis across brain endothelial cells and brain distribution in mice were affected, yet through different mechanisms. Reduced TfR and clathrin expression were found, along with decreased transcytosis in cells and mouse brain distribution. Caveolin-1 expression and GM1 transcytosis were also reduced, yet increased GM1 levels seemed to compensate, providing similar NC brain distribution in NPD vs. control mice. A tendency to lower NHE-1 levels was seen, but highly increased ICAM1 expression in cells and human brains correlated with increased transcytosis and brain distribution in mice. Thus, transcytosis-related alterations in NPD and likely other LSDs may impact therapeutic access to the brain, illustrating the need for these mechanistic studies.

摘要

治疗神经溶酶体贮积症 (LSDs) 受到限制,因为血脑屏障 (BBB) 对大分子的通透性差。目前正在探索针对 BBB 转胞吞作用的纳米制剂,但 LSDs 中这些途径的状态尚不清楚。我们研究了靶向转铁蛋白受体 (TfR)、神经节苷脂 GM1 或细胞间黏附分子 1 (ICAM1) 的纳米载体 (NCs),分别与网格蛋白、小窝或细胞黏附分子 (CAM) 途径相关。我们使用脑内皮细胞和酸性鞘磷脂酶缺乏型尼曼-皮克病 (NPD) 的小鼠模型以及 LSD 患者的死后脑组织,与各自的对照进行比较。NC 穿过脑内皮细胞的转胞吞作用和在小鼠中的脑分布受到影响,但通过不同的机制。发现 TfR 和网格蛋白表达减少,同时细胞内转胞吞作用和小鼠脑内分布减少。小窝蛋白-1 表达和 GM1 转胞吞作用也减少,但 GM1 水平的增加似乎可以代偿,使 NPD 与对照小鼠的 NC 脑内分布相似。发现 NHE-1 水平有下降趋势,但细胞和人脑中高度增加的 ICAM1 表达与转胞吞作用和小鼠脑内分布增加相关。因此,NPD 及其他 LSDs 中转胞吞作用相关的改变可能会影响药物进入大脑的效果,这说明了这些机制研究的必要性。

相似文献

1
Altered blood-brain barrier transport of nanotherapeutics in lysosomal storage diseases.
J Control Release. 2022 Sep;349:1031-1044. doi: 10.1016/j.jconrel.2022.07.022. Epub 2022 Aug 17.
2
Effect of acid sphingomyelinase deficiency in type A Niemann-Pick disease on the transport of therapeutic nanocarriers across the blood-brain barrier.
Drug Deliv Transl Res. 2023 Dec;13(12):3077-3093. doi: 10.1007/s13346-023-01374-z. Epub 2023 Jun 21.
4
A Comparative Study on the Alterations of Endocytic Pathways in Multiple Lysosomal Storage Disorders.
Mol Pharm. 2016 Feb 1;13(2):357-368. doi: 10.1021/acs.molpharmaceut.5b00542. Epub 2016 Jan 11.
5
Investigating receptor-mediated antibody transcytosis using blood-brain barrier organoid arrays.
Fluids Barriers CNS. 2021 Sep 20;18(1):43. doi: 10.1186/s12987-021-00276-x.
7
Intertwined mechanisms define transport of anti-ICAM nanocarriers across the endothelium and brain delivery of a therapeutic enzyme.
J Control Release. 2020 Aug 10;324:181-193. doi: 10.1016/j.jconrel.2020.05.009. Epub 2020 May 7.
9
In vivo biodistribution of prion- and GM1-targeted polymersomes following intravenous administration in mice.
Mol Pharm. 2012 Jun 4;9(6):1620-7. doi: 10.1021/mp200621v. Epub 2012 May 7.

引用本文的文献

1
Receptor-mediated transcytosis for brain delivery of therapeutics: receptor classes and criteria.
Front Drug Deliv. 2024 Mar 12;4:1360302. doi: 10.3389/fddev.2024.1360302. eCollection 2024.
2
Advancing CNS Therapeutics: Enhancing Neurological Disorders with Nanoparticle-Based Gene and Enzyme Replacement Therapies.
Int J Nanomedicine. 2025 Feb 4;20:1443-1490. doi: 10.2147/IJN.S457393. eCollection 2025.
3
Drug and nucleic acid delivery and targeting to the brain.
J Control Release. 2024 May;369:684-686. doi: 10.1016/j.jconrel.2023.09.046. Epub 2024 Apr 12.
5
Effect of acid sphingomyelinase deficiency in type A Niemann-Pick disease on the transport of therapeutic nanocarriers across the blood-brain barrier.
Drug Deliv Transl Res. 2023 Dec;13(12):3077-3093. doi: 10.1007/s13346-023-01374-z. Epub 2023 Jun 21.
6
Polymer-based drug delivery systems under investigation for enzyme replacement and other therapies of lysosomal storage disorders.
Adv Drug Deliv Rev. 2023 Jun;197:114683. doi: 10.1016/j.addr.2022.114683. Epub 2023 Jan 16.

本文引用的文献

2
A method to improve quantitative radiotracing-based analysis of the in vivo biodistribution of drug carriers.
Bioeng Transl Med. 2021 Feb 13;6(2):e10208. doi: 10.1002/btm2.10208. eCollection 2021 May.
3
The evolution of commercial drug delivery technologies.
Nat Biomed Eng. 2021 Sep;5(9):951-967. doi: 10.1038/s41551-021-00698-w. Epub 2021 Apr 1.
4
On the shuttling across the blood-brain barrier via tubule formation: Mechanism and cargo avidity bias.
Sci Adv. 2020 Nov 27;6(48). doi: 10.1126/sciadv.abc4397. Print 2020 Nov.
5
Caveolae-Mediated Transport at the Injured Blood-Brain Barrier as an Underexplored Pathway for Central Nervous System Drug Delivery.
Curr Opin Chem Eng. 2020 Dec;30:86-95. doi: 10.1016/j.coche.2020.08.009. Epub 2020 Sep 12.
6
Intertwined mechanisms define transport of anti-ICAM nanocarriers across the endothelium and brain delivery of a therapeutic enzyme.
J Control Release. 2020 Aug 10;324:181-193. doi: 10.1016/j.jconrel.2020.05.009. Epub 2020 May 7.
7
Mechanism of Secondary Ganglioside and Lipid Accumulation in Lysosomal Disease.
Int J Mol Sci. 2020 Apr 7;21(7):2566. doi: 10.3390/ijms21072566.
8
Bi-functional IgG-lysosomal enzyme fusion proteins for brain drug delivery.
Sci Rep. 2019 Dec 9;9(1):18632. doi: 10.1038/s41598-019-55136-4.
10
Depletion of Caveolin-1 in Type 2 Diabetes Model Induces Alzheimer's Disease Pathology Precursors.
J Neurosci. 2019 Oct 23;39(43):8576-8583. doi: 10.1523/JNEUROSCI.0730-19.2019. Epub 2019 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验